Skip to main content

Advertisement

Log in

Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Despite airborne microorganisms representing a relevant fraction of atmospheric suspended particles, only a small amount of information is currently available on their abundance and diversity and very few studies have investigated the environmental factors influencing the structure of airborne bacterial communities. In this work, we used quantitative PCR and Illumina technology to provide a thorough description of airborne bacterial communities in the urban area of Milan (Italy). Forty samples were collected in 10-day sampling sessions, with one session per season. The mean bacterial abundance was about 104 ribosomal operons per m3 of air and was lower in winter than in the other seasons. Communities were dominated by Actinobacteridae, Clostridiales, Sphingobacteriales and few proteobacterial orders (Burkholderiales, Rhizobiales, Sphingomonadales and Pseudomonadales). Chloroplasts were abundant in all samples. A higher abundance of Actinobacteridae, which are typical soil-inhabiting bacteria, and a lower abundance of chloroplasts in samples collected on cold days were observed. The variation in community composition observed within seasons was comparable to that observed between seasons, thus suggesting that airborne bacterial communities show large temporal variability, even between consecutive days. The structure of airborne bacterial communities therefore suggests that soil and plants are the sources which contribute most to the airborne communities of Milan atmosphere, but the structure of the bacterial community seems to depend mainly on the source of bacteria that predominates in a given period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angenent LT, Kelley ST, St Amand A, Pace NR, Hernandez MT (2005) Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc Natl Acad Sci U S A 102:4860–4865

    Article  CAS  Google Scholar 

  • Beggs CB, Kerr KG (2000) The threat posed by airborne micro-organisms. Indoor Built Environ 9:241–245

    Google Scholar 

  • Benjamini Y, Yekutieli (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Borchard D, Gillet F, Legendre F (2011) Numerical ecology with R. Springer, New York. doi:10.1007/978-1-4419-7976-6

    Book  Google Scholar 

  • Bovallius A, Bucht B, Roffey R, Anas P (1978) Three-year investigation of the natural airborne bacterial flora at four localities in Sweden. Appl Environ Microb 35:847–852

    CAS  Google Scholar 

  • Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Haller AG, Fall R, Knight R, Fierer N (2009) Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microb 38:6029–6041

    Google Scholar 

  • Bowers RM, McLetchie S, Knight R, Fierer N (2010) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5:601–612

    Article  Google Scholar 

  • Bowers RM, Sullivan AP, Costello EK, Collet JL, Knight R, Fierer N (2011) Source of bacteria in outdoor air across cities in the Midwestern United States. Appl Environ Microbiol 77:6350–6356

    Article  CAS  Google Scholar 

  • Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbour diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299–304

    Article  CAS  Google Scholar 

  • Camatini M, Corvaja V, Pezzolato E, Mantecca P, Gualtieri M (2010) PM10-biogenic fraction drives the seasonal variation of pro-inflammatory response in A549 cells. Environ Toxicol 27:63–73

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  Google Scholar 

  • Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4:e6669

    Article  Google Scholar 

  • Claesson MJ, Wang QO, O’Sullivan O, Greene-Diniz R, ColeR JR, Ross P, O’Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:e200

    Article  Google Scholar 

  • Colbeck I, Lazaridis M (2009) Aerosols and environmental pollution. Naturwissenschaften 97:117–131

    Article  Google Scholar 

  • D’Amato G (2002) Environmental urban factors (air pollution and allergens) and the rising trends in allergic respiratory diseases. Allergy 57:30–33

    Article  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  • Durfee T, Nelson R, Baldwin S, Plunkett G III, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csörgo B, Pósfai G, Weinstock GM, Blattner FR (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606

    Article  CAS  Google Scholar 

  • Fang ZG, Ouyang ZY, Zheng H, Wang XK, Hu LF (2007) Culturable airborne bacteria in outdoor environments in Beijing, China. Microb Ecol 54:487–496

    Article  Google Scholar 

  • Fierer N, Liu Z, Rodriguez-Hernandez M, Knight R, Henn M, Hernandez MT (2008) Short-term temporal variability in airborne bacterial and fungal populations. Appl Environ Microb 74:200–207

    Article  CAS  Google Scholar 

  • Finnerty K, Choi JE, Lau A, Davis-Gorman G, Diven C, Seaver N, Linak WP, Witten M, McDonagh PF (2007) Instillation of coarse ash particulate matter and lipopolysaccharide produces a systemic inflammatory response in mice. J Toxicol Environ Health A 70:1957–1966

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Gaspari E, Ambrosini R, Bestetti G (2010) Seasonal variability of bacteria in fine and coarse urban air particulate matter. Appl Microbiol Biotechnol 90:745–753

    Article  Google Scholar 

  • Frohlich-Nowoisky J, Pickersgill DA, Despres VR, Poschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA 106:12814–12819

    Article  Google Scholar 

  • Gandolfi I, Franzetti A, Bertolini V, Gaspari E, Bestetti G (2011) Antibiotic resistance in bacteria associated to coarse atmospheric particulate matter in an urban area. J Appl Microbiol 110:1612–1620

    Article  CAS  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Soft 22:1–19

    Google Scholar 

  • Gouveia NC, Maisonet M (2006) Health effects of air pollution: an overview. In: air quality guidelines: global update 2005. World Health Organization, Copenhagen, pp 87–109

    Google Scholar 

  • Hirano SS, Upper CD (1983) Ecology and epidemiology of foliar bacterial plant pathogens. Annu Rev Phytopathol 21:243–269

    Article  Google Scholar 

  • Huber J, Welch DM, Morrison H, Huse S, Neal P, Butterfield D, Sogin M (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  CAS  Google Scholar 

  • Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308:73

    Article  CAS  Google Scholar 

  • Jeraldo P, Chia N, Goldenfeld N (2011) On the suitability of short reads of 16S rRNA for phylogeny-based analyses in environmental surveys. Environ Microbiol 13:3000–3009

    Google Scholar 

  • Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ 326:151–180

    Article  CAS  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Lee SH, Lee HJ, Kim SJ, Lee HM, Kang H, Kim YP (2010) Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Sci Total Environ 408:1349–1357

    Article  CAS  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lighthart B, Shaffer BT (1995a) Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral. Aerobiologia 11:19–25

    Article  Google Scholar 

  • Lighthart B, Shaffer BT (1995b) Airborne bacteria in the atmosphere surface layer: temporal distribution above a grass seed field. Appl Environ Microbiol 61:1492–1496

    CAS  Google Scholar 

  • Maron PA, Lejon DPH, Carvalho E, Bizet K, Lemanceau P, Ranjard L, Mougel C (2005) Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos Environ 39:3687–3695

    Article  CAS  Google Scholar 

  • Maron PA, Mougel C, Lejon DPH, Carvalho E, Bizet K, Marck G, Cubito N, Lemanceau P, Ranjard L (2006) Temporal variability of airborne bacterial community structure in an urban area. Atmos Environ 40:8074–8080

    Article  CAS  Google Scholar 

  • Moorman JE, Zahran H, Truman BI, Molla MT (2011) Current asthma prevalence—United States, 2006–2008. MMWR Surveill Summ 60((Suppl)):84–86

    Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    CAS  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) Vegan: community ecology package. R package version 1.15-3. Available at http://cran.r-project.org/, http://vegan.r-forge.r-project.org/

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  Google Scholar 

  • Peccia J, Hernandez M (2006) Incorporating polymerase chain reaction-based identification, population characterization and quantification of microorganisms into aerosol science: a review. Atmos Environ 40:3941–3961

    Article  CAS  Google Scholar 

  • Pillai SD, Ricke SC (2002) Bioaerosols from municipal and animal wastes: background and contemporary issues. Can J Microbiol 48:681–696

    Article  CAS  Google Scholar 

  • Polymenakou PN, Mandalakis M, Stephanou EG, Tselepides A (2008) Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environ Health Perspect 116:292–296

    Article  Google Scholar 

  • Putaud J, Raes F, Van Dingenen R, Brüggemann E, Facchini M, Decesari S, Fuzzi S, Gehrig R, Hüglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Müller K, Querol X, Rodriguez S, Schneider J, Spindler G, Ten Brink H, Tørseth K, Wiedensohler A (2004) A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38(16):2579–2595

    Article  CAS  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rinsoz T, Duquenne P, Greff-Mirguet G, Oppliger A (2008) Application of real-time PCR for total airborne bacterial assessment: comparison with epifluorescence microscopy and culture-dependent methods. Atmos Environ 42:6767–6774

    Article  CAS  Google Scholar 

  • Samet JM, Brauer M, Schlesinger R (2006) Particulate matter. In: Air quality guidelines: global update 2005. World Health Organization, Copenhagen, pp 217–305

    Google Scholar 

  • Squizzato S, Masiol M, Innocente E, Pecorari E, Rampazzo G, Pavoni B (2012) A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. Aerosol Science 46:64–76

    Article  CAS  Google Scholar 

  • Therneau TM, Atkinson B, Ripley B, Oksanen J, De’ath G (2007) mvpart: multivariate partitioning. R package version 1.2-6. Available at http://cran.r-project.org/web/packages/mvpart/index.html

  • Wang Y, Qian P (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4:e7401

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267

    Article  CAS  Google Scholar 

  • Womack AM, Bohannan BJM, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos Trans R Soc B Biol Sci 365:3645–3653

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Cariplo Foundation (Milan, Italy) in the frame of the project TOSCA (Toxicity of particulate matter and molecular markers of risk). The authors thank Rocco Piazza and Alessandra Pirola for the DNA sequencing and bioinformatics support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Gandolfi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolini, V., Gandolfi, I., Ambrosini, R. et al. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl Microbiol Biotechnol 97, 6561–6570 (2013). https://doi.org/10.1007/s00253-012-4450-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4450-0

Keywords

Navigation