Skip to main content

Advertisement

Log in

Different flavors of the Atlantic Multidecadal Variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate how differently-constructed indices for North Atlantic sea-surface temperatures (NASSTs) describe the “Atlantic Multidecadal Variability” (AMV) in a suite of unperturbed as well as externally-forced millennial (pre-industrial period) climate simulations. The simulations stem from an ensemble of Earth system models differing in both resolution and complexity. Different criteria exist to construct AMV indices capturing different aspects of the phenomenon. Although all representations of the AMV maintain strong multidecadal variability, they depict different characteristics of simulated low-frequency NASST variability, evolve differently in time and relate to different hemispheric teleconnections. Due to such multifaceted signatures in the ocean-surface as well as in the atmosphere, reconstructions of past AMV may not univocally reproduce multidecadal NASST variability. AMV features under simulated externally-forced pre-industrial climate conditions are not unambiguously distinguishable, within a linear framework, from AMV features in corresponding unperturbed simulations. This prevents a robust diagnosis of the simulated pre-industrial AMV as a predominantly internal rather than externally-forced phenomenon. We conclude that a multi-perspective assessment of multidecadal NASSTs variability is necessary for understanding the origin of the AMV, its physics and its climatic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. doi:10.1038/nature10946

    Google Scholar 

  • Bothe O, Jungclaus JH, Zanchettin D, Zorita E (2012) Climate of the last millennium: ensemble consistency of simulations and reconstructions. Clim Past Discuss 8:2409–2444. doi:10.5194/cpd-8-2409-2012

  • Brovkin V, Lorenz SJ, Jungclaus J, Raddatz T, Timmreck C, Reick CH, Segschneider J, Six K (2010) Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium. Tellus B 62:674–681. doi:10.1111/j.1600-0889.2010.00471.x

    Article  Google Scholar 

  • Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavours. Clim Dyn 37:1205–1215

    Article  Google Scholar 

  • Chylek P, Folland CK, Dijkstra HA, Lesins G, Dubey MK (2011) Icecore data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704. doi:10.1029/2011GL047501

    Article  Google Scholar 

  • Chylek P, Folland C, Frankcombe L, Dijkstra H, Lesins G, Dubey M (2012) Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation. Geophys Res Lett 39:L09705. doi:10.1029/2012GL051241

    Article  Google Scholar 

  • Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol 14:379–402

    Article  Google Scholar 

  • Crowley TJ, Unterman MB (2012) Technical details concerning development of a 1200-yr proxy index for global volcanism. Earth Syst Sci Data Discuss 5:1–28. doi:10.5194/essdd-5-1-2012

    Article  Google Scholar 

  • Crowley TJ et al (2008) Volcanism and the little ice age. Pages News 16:22–23

    Google Scholar 

  • DelSole T, Tippett MK, Shukla J (2011) A significant component of unperturbed multidecadal variability in the recent acceleration of global warming. J Clim 24:909–926. doi:10.1175/2010JCLI3659.1

    Article  Google Scholar 

  • Deser C et al (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J. Clim 25:2622–2651

    Article  Google Scholar 

  • Dima M, Lohmann G (2009) Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J Clim 23:5–16. doi:10.1175/2009JCLI2867.1

    Article  Google Scholar 

  • Dommenget D, Latif M (2008) Generation of hyper-climate modes. Geophys Res Lett 35:L02706. doi:10.1029/2007GL031087

    Article  Google Scholar 

  • Enfield DB, Cid-Serrano L (2006) Projecting the risk of future climate shifts. Int J Climatol 26:885–895

    Article  Google Scholar 

  • Enfield DB, Cid-Serrano L (2010) Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int J Climatol 30(2):174–184

    Google Scholar 

  • Enfield DB, Mestas-Nuñez AM (1999) Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J Clim 12:2719–2733

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Fernández-Donado L et al (2012) Temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past Discuss 8:4003–4073. doi:10.5194/cpd-8-4003-2012

    Article  Google Scholar 

  • Folland CK, Parker DE, Palmer TN (1986) Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature 320:602–607

    Article  Google Scholar 

  • Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the last 1500 years: an improved ice-core based index for climate models. J Geophys Res 113:D2311. doi:10.1029/2008JD010239

    Article  Google Scholar 

  • Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Giorgetta MA et al (2012) Climate change from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project 5. Submitted to JAMES, special issue. The Max Planck Institute for Meteorology Earth System Model

  • Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A treering based reconstruction of the Atlantic multidecadal oscillation since 1567 AD. Geophys Res Lett 31:L12205

    Article  Google Scholar 

  • Grosfeld K, Lohmann G, Rimbu N (2008) The impact of Atlantic and Pacific Ocean sea surface temperature anomalies on the North Atlantic multidecadal variability. Tellus. doi:10.1111/j.1600-0870.2008.00304.x

    Google Scholar 

  • Henriksson SV, Räisänen P, Silén J, Laaksonen A (2012) Quasiperiodic climate variability with a period of 50–80 years: fourier analysis of measurements and earth system model simulations. Clim Dyn. doi:10.1007/s00382-012-1341-0

    Google Scholar 

  • Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737. doi:10.5194/cp-6-723-2010

    Article  Google Scholar 

  • Jungclaus JH et al (2012) Characteristics of the ocean simulations in MPIOM, the ocean component of the Max Planck Institute Earth System Model. Submitted to JAMES, special issue. The Max Planck Institute for Meteorology Earth System Model

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986

    Article  Google Scholar 

  • Knight JF (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625

    Article  Google Scholar 

  • Knudsen MF, Seidenkrantz M-S, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Comm 2:178. doi:10.1038/ncomms1186

    Article  Google Scholar 

  • Kwon Y-O et al (2010) Role of Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review. J Clim 23:3249–3281

    Article  Google Scholar 

  • Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Teng H (2011) Last millennium climate and its variability in CCSM4. J Clim. doi:10.1175/JCLI-D-11-00326.1

  • Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J. Clim 25:1963–1995. doi:10.1175/2011JCLI3980.1

    Article  Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos Trans AGU 87(24):233–244

    Article  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260

    Article  Google Scholar 

  • Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Müller WA (2012) Stratosphere-troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean. Geophys Res Lett 39:L05801. doi:10.1029/2011GL050771

    Article  Google Scholar 

  • Marshall J et al (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898. doi:10.1002/joc.693

    Article  Google Scholar 

  • Menary MB, Park W, Lohman K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38:2377–2388

    Article  Google Scholar 

  • Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27:27–57

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi:10.1038/NGEO995

    Google Scholar 

  • Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37:L24702. doi:10.1029/2010GL045560

    Google Scholar 

  • Saenger C, Cohen AL, Oppo DW, Halley RB, Carilli JE (2009) Surface temperature trends and variability in the low-latitude North Atlantic since 1552. Nat Geosci 2:492–495. doi:10.1038/ngeo552

    Article  Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726. doi:10.1038/367723a0

    Article  Google Scholar 

  • Schmidt GA et al (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi:10.5194/gmd-4-33-2011

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth century SST in the North Atlantic. J Clim 22:1469–1481. doi:10.1175/2008JCLI2561.1

    Article  Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi:10.1029/2011GL048712

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi:10.1029/2006GL026894

    Article  Google Scholar 

  • Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the holocene. Astron Astrophys 531:A6. doi:10.1051/0004-6361/201015843

    Article  Google Scholar 

  • Vincze M, Jánosi IM (2011) Is the Atlantic Multidecadal Oscillation (AMO) a statistical phantom? Nonlin Proc Geophys 18:469–475. doi:10.5194/npg-18-469-2011

    Article  Google Scholar 

  • Wei W, Lohmann G (2012) Simulated atlantic multidecadal oscillation during the holocene. J Clim 25:6989–7002. http://dx.doi.org/10.1175/JCLI-D-11-00667.1

    Google Scholar 

  • Wu Z, Huang NE, Wallace JM, Smoliak BV, Chen X (2011a) On the time-varying trend in global-mean surface temperature. Clim Dyn 37:759–773. doi:10.1007/s00382-011-1128-8

    Article  Google Scholar 

  • Wu S, Liu Z, Zhang R, Delworth TL (2011b) On the observed relationship between the Pacific decadal oscillation and the Atlantic Multi-decadal Oscillation. J Oceanogr 67:27–35. doi:10.1007/s10872-011-0003-x

    Article  Google Scholar 

  • Wyatt MG, Kravtsov S, Tsonis AA (2011) Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Clim Dyn. doi:10.1007/s00382-011-1071-8

    Google Scholar 

  • Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121. doi:10.1007/s00382-009-0540-9

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Traverso P, Tomasino M (2008) Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J Geophys Res 113:D12102. doi:10.1029/2007JD009157

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. doi:10.1029/2010GL043717

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Bothe O, Matei D, Jungclaus JH (2012a) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn. doi:10.1007/s00382-012-1361-9

    Google Scholar 

  • Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Krueger K, Lohmann K, Jungclaus JH (2012b) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1–2):419–444. doi:10.1007/s00382-011-1167-1

    Article  Google Scholar 

  • Zhang R, Delworth TL (2007) Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. doi:10.1029/2007GL031601

    Google Scholar 

  • Zhong Y et al (2010) Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Clim Dyn 23:5–7. doi:10.1007/s00382-010-0967-z

    Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers whose comments helped to improve the study and Katja Lohmann for useful comments on an early version of the manuscript. This research was supported by the Max Planck Society for the Advancement of Science. This work was funded by the Federal Ministry for Education and Research in Germany (BMBF) through the research program “MiKlip” (FKZ:01LP1158A). O.B. is funded by the DFG through the Cluster of Excellence CliSAP, University of Hamburg. J.B. is partly funded by the DecCen project funded by the research council of Norway. J. H. J. received funding from the European Community 7th framework program under grant agreement GA212643 (THOR: “Thermohaline Overturning—at Risk?”, 2008–2012). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling and the participating groups for producing and making available the model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Zanchettin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanchettin, D., Bothe, O., Müller, W. et al. Different flavors of the Atlantic Multidecadal Variability. Clim Dyn 42, 381–399 (2014). https://doi.org/10.1007/s00382-013-1669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1669-0

Keywords

Navigation