Skip to main content

Advertisement

Log in

Influence of the circumglobal wave-train on European summer precipitation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We investigate European summer (July–August) precipitation variability and its global teleconnections using the NCEP/NCAR reanalysis data (1950–2010) and a historical Coupled Model Intercomparison Project climate simulation (1901–2005) carried out using the ECHAM6/MPIOM climate model. A wavelike pattern is found in the upper tropospheric levels (200 hPa) similar to the summer circumglobal wave train (CGT) extending from the North Pacific to the Eurasian region. The positive phase of the CGT is associated with upper level anomalous low (high) pressure over western (eastern) Europe. It is further associated with a dipole-like precipitation pattern over Europe entailing significantly enhanced (reduced) precipitation over the western (eastern) region. The anomalous circulation features and associated summer precipitation pattern over Europe inverts for the negative CGT phase. Accordingly, the global teleconnection pattern of a precipitation index summarizing summer precipitation over Western Europe entails an upper level signature which consists of a CGT-like wave pattern extending from the North Pacific to Eurasia. The imprint of the CGT on European summer precipitation is distinct from that of the summer North Atlantic Oscillation, despite the two modes of variability bear strong similarities in their upper level atmospheric pattern over Western Europe. The analysis of simulated CGT features and of its climatic implications for the European region substantiates the existence of the CGT-European summer precipitation connection. The summer CGT in the mid-latitude therefore adds to the list of the modes of large-scale atmospheric variability significantly influencing European summer precipitation variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Blackburn M, Methven J, Roberts N (2008) Large scale context for the UK floods in summer 2007. Weather 63:280–288

    Article  Google Scholar 

  • Bladé I, Liebmann B, Fortuny D, Jan van Oldenborgh G (2011) Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim Dyn. doi:10.1007/s00382-011-1195-x

    Google Scholar 

  • Branstator G (2002) Circumglobal teleconnections, the jet stream waveguide, and North Atlantic Oscillation. J Clim 15:1893–1910

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2003) Severe summertime flooding in Europe. Nature 421:805–806. doi:10.1038/421805a

    Article  Google Scholar 

  • Colman A, Davey M (1999) Prediction of summer temperature, rainfall and pressure in Europe from preceding winter North Atlantic Ocean temperature. Int J Climatol 19:513–536

    Article  Google Scholar 

  • Ding Q, Wang B (2005) Circumglobal teleconnection in northern hemisphere summer. J Clim 18:3482–3505

    Article  Google Scholar 

  • Dirmeyer PA, Fennessy MJ, Marx L (2003) Low skill in dynamical prediction of boreal summer climate: grounds for looking beyond sea surface temperature. J Clim 16:995–1002

    Article  Google Scholar 

  • Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic oscillation: past, present and future. J Clim 22:1082–1103. doi:10.1175/2008JCLI2459.1

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2012) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst. doi:10.1002/jame.20038

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. doi:10.1029/2008JD10201

    Article  Google Scholar 

  • Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou T (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dyn 34(7–8):1041–1058. ISSN 0930-7575. doi:10.1007/s00382-009-0571-2

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperature and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  • Hurrell JW, Folland CK (2002) A change in the summer atmospheric circulation over the North Atlantic. CLIVAR Exch 7(3–4):52–54

    Google Scholar 

  • Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-earth system model. J Adv Model Earth Syst. doi:10.1002/jame.20023

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:567–589

    Google Scholar 

  • Koenigk T, Mikolajewicz U (2008) Seasonal to interannual climate predictability in mid and high northern latitudes in a global climate model. Clim Dyn 28:783–798. doi:10.1007/s00382-008-0419-1

    Google Scholar 

  • Koster RD, Suarez MJ (1995) Relative contributions of land and ocean processes to precipitation variability. J Geophys Res 13775–13790. doi:10.1029/95JD00176

  • Koster RD, Suarez MJ (1995b) Relative contributions of land and ocean processes to precipitation variability. J Geophys Res 100(D7):13775–13790. doi:10.1029/95JD00176

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. doi:10.1126/science.1100217

    Article  Google Scholar 

  • Lenderink G, van Meijgaard E, Selten F (2009) Intense coastal rainfall in the Netherlands in response to high sea surface temperatures: analysis of the event of August 2006 from the perspective of a changing climate. Clim Dyn 32:19–33. doi:10.1007/s00382-008-0366-x

    Article  Google Scholar 

  • Marsh TJ, Hannaford J (2007) The summer 2007 floods in England and Wales—a hydrological appraisal. Centre for Ecology and Hydrology, Wallingford, p 32

    Google Scholar 

  • Meehl GA et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Müller WA, Baehr J, Haak H, Jungclaus JH, Kröger J, Matei D, Notz D, Pohlmann H, von Storch JS, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys Res Lett 39. doi:10.1029/2012GL053326

  • Ogi M, Yamazaki K, Tachibana Y (2005) The summer northern annular mode and abnormal summer weather in 2003. Geophys Res Lett 32:L04706. doi:10.1029/2004GL021528

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202. doi:10.1029/2004GL019836

    Article  Google Scholar 

  • Qian B, Xu H, Corte RJ (2000) Spatial–temporal structures of quasi-periodic oscillations in precipitation over Europe. Int J Climatol 20:1583–1598

    Article  Google Scholar 

  • Reynolds R, Smith T, Liu C, Chelton D, Casey K, Schlax M (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Rodwell MJ, Drévillon M, Frankignoul C, Hurrell JW, Pohlmann H, Stendel M, Sutton RT (2004) North Atlantic forcing of climate and its uncertainty from a multi-model experiment. Q J R Meteorol Soc 130:2013–2032

    Article  Google Scholar 

  • Saeed S, Müller WA, Hagemann S, Jacob D (2011a) Circumglobal wave train and summer monsoon over northwestern India and Pakistan; the explicit role of the surface heat low. Clim Dyn 37:1045–1060. doi:10.1007/s00382-010-0888-x

    Article  Google Scholar 

  • Saeed S, Müller WA, Hagemann S, Jacob D, Mujumdar M, Krishnan R (2011b) Precipitation variability over the South Asian monsoon heat low and associated teleconnections. Geophys Res Lett 38:L08702. doi:10.1029/2011GL046984

    Article  Google Scholar 

  • Schär C, Lüthi D, Beyerle U (1999) The soil-precipitation feedback: a process study with a regional climate model. J Clim 12:722–741

    Article  Google Scholar 

  • Schär C, Lüthi D, Beyerle U (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land atmosphere coupling and climate change in Europe. Nature 443:205–209. doi:10.1038/nature05095

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meeht GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Article  Google Scholar 

  • Zanchettin D, Franks SW, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multidecadal variability described through the PDO index. Int J Climatol 28:995–1006. doi:10.1002/joc.1601

    Article  Google Scholar 

  • Zolina O, Simmer C, Kapala A, Bachner S, Gulev SK, Maechel H (2008) Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network. J Geophys Res 113:D06110. doi:10.1029/2007JD008393

    Google Scholar 

  • Zveryaev II (2004) Seasonality in precipitation variability over Europe. J Geophys Res 109:D05103. doi:10.1029/2003JD003668

    Google Scholar 

  • Zveryaev II (2006) Seasonally varying modes in long-term variability of European precipitation during the 20th century. J Geophys Res 111:D21116. doi:10.1029/2005JD006821

    Article  Google Scholar 

Download references

Acknowledgments

This study is funded by the Belgian Science Policy (BELSPO) under the MACCBET Project. This research was further supported by the German Ministry of Education and Research (BMBF) under the MiKlip project. We thank the two anonymous reviewers for their constructive comment on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Saeed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed, S., Van Lipzig, N., Müller, W.A. et al. Influence of the circumglobal wave-train on European summer precipitation. Clim Dyn 43, 503–515 (2014). https://doi.org/10.1007/s00382-013-1871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1871-0

Keywords

Navigation