Skip to main content

Advertisement

Log in

Multi-model ensemble analysis of Pacific and Atlantic SST variability in unperturbed climate simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We assess internally-generated climate variability expressed by a multi-model ensemble of unperturbed climate simulations. We focus on basin-scale annual-average sea surface temperatures (SSTs) from twenty multicentennial pre-industrial control simulations contributing to the fifth phase of the Coupled Model Intercomparison Project. Ensemble spatial patterns of regional modes of variability and ensemble (cross-)wavelet-based phase-frequency diagrams of corresponding paired indices summarize the ensemble characteristics of inter-basin and regional-to-global SST interactions on a broad range of timescales. Results reveal that tropical and North Pacific SSTs are a source of simulated interannual global SST variability. The North Atlantic-average SST fluctuates in rough co-phase with the global-average SST on multidecadal timescales, which makes it difficult to discern the Atlantic Multidecadal Variability (AMV) signal from the global signal. The two leading modes of tropical and North Pacific SST variability converge towards co-phase in the multi-model ensemble, indicating that the Pacific Decadal Oscillation (PDO) results from a combination of tropical and extra-tropical processes. No robust inter- or multi-decadal inter-basin SST interaction arises from our ensemble analysis between the Pacific and Atlantic oceans, though specific phase-locked fluctuations occur between Pacific and Atlantic modes of SST variability in individual simulations and/or periods within individual simulations. The multidecadal modulation of PDO by the AMV identified in observations appears to be a recurrent but not typical feature of ensemble-simulated internal variability. Understanding the mechanism(s) and circumstances favoring such inter-basin SST phasing and related uncertainties in their simulated representation could help constraining uncertainty in decadal climate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys Res Lett 39:L09712. doi:10.1029/2012GL051607

    Google Scholar 

  • Ault TR, Cole JE, St. George S (2012) The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models. Geophys Res Lett 39:L21705. doi:10.1029/2012GL05342

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevag A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2013) The Norwegian earth system model, NorESM1-M—Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. doi:10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Bhend J, Whetton P (2013) Consistency of simulated and observed regional changes in temperature, sea level pressure and precipitation. Clim Change. doi:10.1007/s10584-012-0691-2

    Google Scholar 

  • Bi D et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64

    Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. doi:10.1038/nature10946

    Google Scholar 

  • Bothe O, Jungclaus JH, Zanchettin D (2013) Consistency of the multi-model CMIP5/PMIP3-past1000 Ensemble. Clim Past 9(6):2471–2487. doi:10.5194/cp-9-2471-2013

    Article  Google Scholar 

  • Braconnot P et al (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424. doi:10.1038/nclimate1456

    Article  Google Scholar 

  • Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavours. Clim Dyn 37:1205–1215

    Article  Google Scholar 

  • Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmo Chem Phys Discuss 11:22893–22907. doi:10.5194/acpd-11-22893-2011

    Article  Google Scholar 

  • Collins WJ et al (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4:1051–1075. doi:10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • D’Orgeville M, Peltier WR (2007) On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: might they be related? Geophys Res Lett 34:L23705. doi:10.1029/2007GL031584

    Google Scholar 

  • Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779. doi:10.1038/nclimate1562

    Article  Google Scholar 

  • Di Lorenzo E, Cobb KM, Furtado J, Schneider N, Anderson B, Bracco A, Alexander MA, Vimont D (2010) Central Pacific El Niño and decadal climate change in the North Pacific. Nat Geosci 3(11):762–765. doi:10.1038/NGEO984

    Article  Google Scholar 

  • Donner LJ et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J Clim. doi:10.1175/2011JCLI3955.1

    Google Scholar 

  • Enfield DB, Mestas-Nuñez AM (2000) Global modes of ENSO and Non-ENSO sea surface temperature variability and their associations with climate. In: Henry F. Diaz, Vera Markgraf (eds) Multiscale variability and global and regional impacts, Cambridge University Press, pp 89–112. doi:http://dx.doi.org/10.1017/CBO9780511573125.004

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Frankignoul C, Sennéchael N, Kwon Y-O, Alexander MA (2011) Influence of the meridional Shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J Clim 24:762–777

    Article  Google Scholar 

  • Fritsch JM, Hilliker J, Ross J, Vislocky RL (2000) Model consensus. Weather Forecast 15:571–582

    Article  Google Scholar 

  • Ge Z (2008) Significance tests for the wavelet cross spectrum and wavelet linear coherence. Ann Geophys 26:3819–3829

    Article  Google Scholar 

  • Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Giorgetta MA et al (2013) Climate change from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project 5. J Adv Model Earth Syst 5:572–597. doi:10.1002/jame.20038

    Article  Google Scholar 

  • Graf HF, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge” and Eurasian Climate. J Geophys Res 117:D01102. doi:10.1029/2011JD016493

    Article  Google Scholar 

  • Griffies SM, Bryan K (1997) A predictability study of simulated North Atlantic multidecadal variability. Clim Dyn 13:459–487

    Article  Google Scholar 

  • Griffies SM et al (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim. doi:10.1175/2011JCLI3964.1

    Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566

    Article  Google Scholar 

  • Grodsky SA, Carton JA, Nigam S, Okumura YM (2012) Tropical Atlantic biases in CCSM4. J Clim 25:3684–3701. doi:10.1175/JCLI-D-11-00315.1

    Article  Google Scholar 

  • Grossmann I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res 114:D24107. doi:10.1029/2009JD012728

    Article  Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5. CLIVAR Exchanges No. 58. 17(1):29–32

    Google Scholar 

  • Hand R, Keenlyside N, Omrani N-E, Latif M (2014) Simulated response to inter-annual SST variations in the Gulf Stream region. Clim Dyn 42:715–731. doi:10.1007/s00382-013-1715-y

    Article  Google Scholar 

  • Joetzjer E, Douville H, Delire C, Ciais P (2013) Present-day and future Amazonian precipitation in global climate models CMIP5 versus CMIP3. Clim Dyn. doi:10.1007/s00382-012-1644-1

    Google Scholar 

  • Jones CD et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. doi:10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737. doi:10.5194/cp-6-723-2010

    Article  Google Scholar 

  • Jungclaus JH et al (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the Max Planck Institute Earth System Model. J Adv Model Earth Syst 5:422–446. doi:10.1002/jame.20023

    Article  Google Scholar 

  • Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn. doi:10.1007/s00382-013-1712-1

    Google Scholar 

  • Knight JR (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625

    Article  Google Scholar 

  • Knutti R, Abramowitz G, Collins M, Eyring V, Gleckler PJ, Hewitson B, Mearns L (2010) Good practice guidance paper on assessing and combining multi model climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Midgley PM (eds) Meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi model climate projections. IPCC working group I technical support unit, University of Bern, Bern, Switzerland

  • Li C, Wu L, Wang Q, Qu L, Zhang L (2009) An intimate coupling of ocean–atmospheric interaction over the extratropical North Atlantic and Pacific. Clim Dyn 32:753–765. doi:10.1007/s00382-009-0529-4

    Article  Google Scholar 

  • Li J et al (2013) El Niño modulations over the past seven centuries. Nat Clim Change 3:822–826. doi:10.1038/nclimate1936

    Article  Google Scholar 

  • Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995. doi:10.1175/2011JCLI3980.1

    Article  Google Scholar 

  • Lohmann K, Jungclaus JH, Matei D, Mignot J, Menary M, Langehaug HR, Ba J, Gao Y, Otterå OH, Park W, Lorenz S (2014) The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation. Ocean Sci 10:227–241. doi:10.5194/os-10-227-2014

    Article  Google Scholar 

  • Long MC, Lindsay K, Peacock S, Moore JK, Doney SC (2013) Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J Clim 26:6775–6800. doi:10.1175/JCLI-D-12-00184.1

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Maraun D, Kurths J (2004) Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process Geophys 11(4):505–514 SRef-ID: 1607-7946/npg/2004-11-505

    Article  Google Scholar 

  • Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404. doi:10.5194/os-7-389-2011

    Article  Google Scholar 

  • Müller WA, Roeckner E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi:10.1007/s00382-007-0357-3

    Article  Google Scholar 

  • Newman M, Compo G, Alexander M (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi:10.1038/NGEO995

    Google Scholar 

  • Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel climate model. Geophys Res Lett 37:L24702. doi:10.1029/2010GL045560

    Google Scholar 

  • Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2011) The CSIRO Mk3L climate system model version 1.0—Part 1: description and evaluation. Geosci Model Dev 4:483–509. doi:10.5194/gmd-4-483-2011

    Article  Google Scholar 

  • Phipps SJ, Rotstayn LD, Gordon HB, Roberts JL, Hirst AC, Budd WF (2012) The CSIRO Mk3L climate system model version 1.0—Part 2: response to external forcings. Geosci Model Dev 5:649–682. doi:10.5194/gmd-5-649-2012

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Schneider N, Saravanan R, Dommenget D, Latif M (2001) The role of ocean dynamics in producing decadal climate variability in the North Pacific. Clim Dyn 18:51–70

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:D144407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. doi:10.5194/acp-12-6377-2012

    Article  Google Scholar 

  • Ruiz-Barradas A, Nigam S, Kavvada A (2013) The Atlantic multidecadal oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-013-1810-0

    Google Scholar 

  • Russell AM, Gnanadesikan A (2014) Understanding multidecadal variability in ENSO amplitude. J Clim 27:4037–4051. doi:10.1175/JCLI-D-13-00147.1

    Article  Google Scholar 

  • Sheffield J et al (2013) North American climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim 26:9247–9290. doi:10.1175/JCLI-D-12-00593.1

    Article  Google Scholar 

  • Taguchi B, Xie S-P, Schneider N, Nonaka M, Sasaki H, Sasai Y (2007) Decadal variability of the Kuroshio extension: observations and an eddy-resolving model hindcast. J Clim 20:2357–2377

    Article  Google Scholar 

  • Tantet A, Dijkstra HA (2014) An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature. Earth Syst Dyn 5:1–14. doi:10.5194/esd-5-1-2014

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • van Oldenborgh GJ, Doblas Reyes FJ, Drijfhout SS, Hawkins E (2013) Reliability of regional climate model trends. Environ Res Lett 8:014055. doi:10.1088/1748-9326/8/1/014055

    Article  Google Scholar 

  • Vimont D (2005) The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J Clim 18:2080–2092

    Article  Google Scholar 

  • Voldoire A et al (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi:10.1007/s00382-011-1259-y

    Google Scholar 

  • Wang C (2005) ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future. Kluwer Academic Publishers, Dordrecht, pp 173–202

    Google Scholar 

  • Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. doi:10.1038/nclimate2118

    Article  Google Scholar 

  • Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679

    Article  Google Scholar 

  • Wu S, Liu Z, Zhang R, Delworth TL (2011) On the observed relationship between the Pacific decadal oscillation and the Atlantic multi-decadal oscillation. J Oceanogr 67:27–35. doi:10.1007/s10872-011-0003-x

    Article  Google Scholar 

  • Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121. doi:10.1007/s00382-009-0540-9

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Traverso P, Tomasino M (2008) Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J Geophys Res 113:D12102. doi:10.1029/2007JD009157

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. doi:10.1029/2010GL043717

    Article  Google Scholar 

  • Zanchettin D, Bothe O, Graf HF, Lorenz SJ, Luterbacher J, Timmreck C, Jungclaus JH (2013a) Background conditions influence the decadal climate response to strong volcanic eruptions. J Geophys Res Atmos 118(10):4090–4106. doi:10.1002/jgrd.50229

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013b) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40(5):1301–1318. doi:10.1007/s00382-012-1361-9

    Article  Google Scholar 

  • Zanchettin D, Bothe O, Müller W, Bader J, Jungclaus JH (2014) Different flavors of the Atlantic multidecadal variability. Clim Dyn 42(1–2):381–399. doi:10.1007/s00382-013-1669-0

    Article  Google Scholar 

  • Zhang R, Delworth TL (2007) Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. doi:10.1029/2007GL031601

    Google Scholar 

  • Zhang R et al (2013) Have aerosols caused the observed Atlantic multidecadal variability? J Atmos Sci 70:1135–1144. doi:10.1175/JAS-D-12-0331.1

    Article  Google Scholar 

  • Zou Y, Yu J-Y, Lee T, Lu M-M, Kim ST (2014) CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J Geophys Res Atmos 119(6):3076–3092. doi:10.1002/2013JD021064

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous Reviewers whose comments contributed to substantially improve the study and the paper. The authors also thank Jochem Marotzke, Lorenzo Tomassini and Svante Henriksson for useful comments on early versions of the manuscript. This work was funded by the BMBF (research program “MiKlip”, FKZ:01LP1158A). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling and the participating groups for producing and making available the model output. The cross-wavelet software was provided by A. Grinsted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zanchettin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanchettin, D., Bothe, O., Rubino, A. et al. Multi-model ensemble analysis of Pacific and Atlantic SST variability in unperturbed climate simulations. Clim Dyn 47, 1073–1090 (2016). https://doi.org/10.1007/s00382-015-2889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2889-2

Keywords

Navigation