Skip to main content

Advertisement

Log in

Thermohaline patterns of intrinsic Atlantic Multidecadal Variability in MPI-ESM-LR

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A vivid scientific debate exists on the nature of the Atlantic Multidecadal Variability (AMV) as an intrinsic rather than predominantly forced climatic phenomenon, and on the role of ocean circulation. Here, we use a multi-millennial unperturbed control simulation and a Holocene simulation with slow-varying greenhouse gas and orbital forcing performed with the low-resolution version of the Max Planck Institute Earth System Model to illustrate thermohaline conditions associated with twelve events of strong AMV that are comparable, in the surface anomalies, to observations in their amplitudes (~ 0.3 °C) and periods (~ 80 years). The events are associated with recurrent yet spatially diverse same-sign anomalous sea-surface temperature and salinity fields that are substantially symmetric in the warm-to-cold and following cold-to-warm transitions and only partly superpose with the long-term spatial AMV pattern. Subpolar cold-fresh anomalies develop in the deep layers during the peak cold phase of strong AMV events, often in association with subtropical warm-salty anomalies yielding a meridional dipole pattern. The Atlantic meridional overturning circulation (AMOC) robustly weakens during the warm-to-cold transition of a strong AMV event and recovers thereafter, with surface salinity anomalies being potential precursors of such overturning changes. A Holocene simulation with the same model including volcanic forcing can disrupt the intrinsic AMV–AMOC connection as post-eruption periods often feature an AMOC strengthening forced by the volcanically induced surface cooling. Overall, our results support the AMV as a potential intrinsic feature of climate, whose episodic strong anomalous events can display different shades of spatial patterns and timings for the warm-to-cold and subsequent cold-to-warm transitions. Attribution of historical AMV fluctuations thus requires full consideration of the associated surface and subsurface thermohaline conditions and assessing the AMOC–AMV relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Primary data and scripts used in the analysis and other supplementary information that may be useful in reproducing this work will be archived by the Max Planck Institute for Meteorology upon final publication.

References

  • Arzel O, Huck T, de Verdière AC (2018) The internal generation of the atlantic ocean interdecadal variability. J Clim 31:6411–6432

    Article  Google Scholar 

  • Bader J, Jungclaus J, Krivova N, Lorenz S, Maycock A, Raddatz T, Schmidt H, Toohey M, Wu C-J, Claussen M (2020) Global temperature modes shed light on the Holocene temperature conundrum. Nat Commun 11:4726. https://doi.org/10.1038/s41467-020-18478-6

    Article  Google Scholar 

  • Bellomo K, Murphy LN, Cane MA, Clement AC, Polvani LM (2018) Historical forcings as main drivers of the Atlantic multidecadal variability in the CESM large ensemble. Clim Dyn 50(9–10):3687–3698. https://doi.org/10.1007/s00382-017-3834-3

    Article  Google Scholar 

  • Bellucci A, Mariotti A, Gualdi S (2017) The role of forcings in the twentieth-century North Atlantic multidecadal variability: the 1940–75 North Atlantic cooling case study. J Clim 30(18):7317–7337. https://doi.org/10.1175/JCLI-D-16-0301.1

    Article  Google Scholar 

  • Birkel SD, Mayewski PA, Maasch KA, Kurbatov AV, Lyon B (2018) Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. NPJ Clim Atmos Sci 1(1):1–7

    Article  Google Scholar 

  • Boer GJ, Smith DM, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R (2016) The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci Model Dev 9:3751–3777. https://doi.org/10.5194/gmd-9-3751-2016

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. https://doi.org/10.1038/nature10946

    Article  Google Scholar 

  • Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Rädel G, Stevens B (2015) The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science 350(6258):320–324. https://doi.org/10.1126/science.aab3980

    Article  Google Scholar 

  • Clement A, Bellomo K, Murphy LN, Cane MA, Mauritsen T, Stevens B (2016) Response to comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation.” Science 352(6293):1527. https://doi.org/10.1126/science.aaf2575

    Article  Google Scholar 

  • Dallmeyer A, Claussen M, Lorenz S, Sigl M, Toohey M, Herzshuh U (2021) Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Clim past 17:2481–2513. https://doi.org/10.5194/cp-17-2481-2021

    Article  Google Scholar 

  • Dawdy DR, Matalas NC (1964) Statistical and probability analysis of hydrologic data, part III: Analysis of variance, covariance and time series. In: Chow VT (ed) Handbook of applied hydrology, a compendium of water-resources technology. McGraw-Hill Book Company, New York, p 8.68-8.90

    Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676. https://doi.org/10.1007/s003820000075

    Article  Google Scholar 

  • Delworth TL, Zeng F (2016) The impact of the north Atlantic oscillation on climate through its influence on the Atlantic meridional overturning circulation. J Clim 29:941–962. https://doi.org/10.1175/JCLI-D-15-0396.1

    Article  Google Scholar 

  • Delworth TL et al (2016) The North Atlantic Oscillation as a driver of rapid climate change in the Northern hemisphere. Nat Geosci 9:509

    Article  Google Scholar 

  • Dima M, Lohmann G (2007) A hemispheric mechanism for the Atlantic Multidecadal Oscillation. J Clim 20:2706–2719. https://doi.org/10.1175/JCLI4174.1

    Article  Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Fang SW, Khodri M, Timmreck C, Zanchettin D, Jungclaus JH (2021) Disentangling internal and external contributions to Atlantic multidecadal variability over the past millennium. Geophys Res Lett 48(23):e2021GL095990

    Article  Google Scholar 

  • Frajka-Williams E, Beaulieu C, Duchez A (2017) Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Sci Rep 7:11224

    Article  Google Scholar 

  • Gastineau G, Mignot J, Arzel O, Huck T (2018) North Atlantic Ocean internal decadal variability: role of the mean state and ocean-atmosphere coupling. J Geophys Res Oceans 123:5949–5970

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  • Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A treering based reconstruction of the Atlantic multidecadal oscillation since 1567 AD. Geophys Res Lett 31:L12205

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566

    Article  Google Scholar 

  • Hand R, Bader J, Matei D, Ghosh R, Jungclaus JH (2020) Changes of decadal SST variations in the subpolar North Atlantic under strong CO2 forcing as an indicator for the ocean circulation’s contribution to Atlantic Multidecadal Variability. J Clim 33:3213–3228

    Article  Google Scholar 

  • Hodson DLR et al (2022) Coupled climate response to Atlantic Multidecadal Variability in a multi-model multi-resolution ensemble. Clim Dyn 59:805–836

    Article  Google Scholar 

  • Ilyina T, Six KD, Segschneider J, Maier-Reimer E, Li H, Nunez-Riboni I (2013) Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J Adv Model Earth Sys 5:287–315. https://doi.org/10.1029/2012MS000178

    Article  Google Scholar 

  • Jiang W, Gastineau G, Codron F (2021) Multicentennial variability driven by salinity exchanges between the Atlantic and the Arctic Ocean in a coupled climate model. J Adv Model Earth Syst 13:e2020M002366

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031. https://doi.org/10.1175/JCLI3462.1

    Article  Google Scholar 

  • Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446. https://doi.org/10.1002/jame.20023

    Article  Google Scholar 

  • Jungclaus JH, Lohmann K, Zanchettin D (2014) Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Clim past 10:2201–2213. https://doi.org/10.5194/cp-10-2201-2014

    Article  Google Scholar 

  • Jungclaus JH et al (2017) The PMIP4 contribution to CMIP6—part 3: the last millennium, scientific objective and experimental design for the PMIP4 past1000 simulations. Geosci Model Dev 10:4005–4033. https://doi.org/10.5194/gmd-10-4005-2017

    Article  Google Scholar 

  • Klavans JM, Clement AC, Cane MA, Murphy LN (2022) The evolving role of external forcing in North Atlantic SST variability over the last millennium. J Clim 35:1–44

    Article  Google Scholar 

  • Knight JR (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  • Lai WKM, Robson JI, Wilcox LJ, Dunstone N (2022) Mechanisms of internal Atlantic Multidecadal variability in HadGEM3-GC3.1 at two different resolutions. J Clim 35:1365–1383

    Article  Google Scholar 

  • Li X, Holland DM, Gerber EP, Yoo C (2014) Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505:538–542

    Article  Google Scholar 

  • Li L, Lozier MS, Buckley MW (2020) An investigation of the ocean’s role in Atlantic multidecadal variability. J Clim 33(8):3019–3035

    Article  Google Scholar 

  • Maher N, Milinski S, Suarez-Gutierrez L, Botzet M, Dobrynin M, Kornblueh L et al (2019) The Max Planck Institute Grand Ensemble: Enabling the exploration of climate system variability. J Adv Model Earth Syst 11:2050–2069. https://doi.org/10.1029/2019MS001639

    Article  Google Scholar 

  • Mann ME, Steinman BA, Brouillette DJ, Miller SK (2021) Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 371(6533):1014–1019

    Article  Google Scholar 

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Roeske F (2003) The Max Planck Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell 5:91–127

    Article  Google Scholar 

  • Martín-Rey M, Rodríguez-Fonseca B, Polo I (2015) Atlantic opportunities for ENSO prediction. Geophys Res Lett 42:6802–6810. https://doi.org/10.1002/2015GL065062

    Article  Google Scholar 

  • Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R, Brovkin V, Claussen M, Crueger T, Esch M, Fast I, Fiedler S et al (2019) Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J Adv Model Earth Sy 11:998–1038. https://doi.org/10.1029/2018MS001400

    Article  Google Scholar 

  • Meccia VL, Fuentes-Franco R, Davini P et al (2022) Internal multi-centennial variability of the Atlantic Meridional Overturning Circulation simulated by EC-Earth3. Clim Dyn. https://doi.org/10.1007/s00382-022-06534-4

    Article  Google Scholar 

  • Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404. https://doi.org/10.5194/os-7-389-2011

    Article  Google Scholar 

  • Meehl GA, Hu A, Castruccio F, England MH, Bates SC, Danabasoglu G, McGregor S, Arblaster JM, Xie S-P, Rosenbloom N (2021) Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat Geosci 14:36–42

    Article  Google Scholar 

  • Menary MB, Hodson DLR, Robson JI, Sutton RT, Wood RA, Hunt JA (2015) Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys Res Lett 42:5926–5934

    Article  Google Scholar 

  • Moore GWK, Halfar J, Majeed H, Adey W, Kronz A (2017) Amplification of the Atlantic Multidecadal Oscillation associated with the onset of the industrial-era warming. Sci Rep 7:40861

    Article  Google Scholar 

  • Moreno-Chamarro E, Zanchettin D, Lohmann K, Jungclaus JH (2015) Internally generated decadal cold events in the northern North Atlantic and their possible implications for the demise of the Norse settlements in Greenland. Geophys Res Lett 42(3):908–915. https://doi.org/10.1002/2014GL062741

    Article  Google Scholar 

  • Moreno-Chamarro E, Zanchettin D, Lohmann K, Luterbacher J, Jungclaus JH (2017a) Winter amplification of the European Little Ice Age cooling by the subpolar gyre. Sci Rep 7:9981. https://doi.org/10.1038/s41598-017-07969-0

    Article  Google Scholar 

  • Moreno-Chamarro E, Zanchettin D, Lohman K, Jungclaus JH (2017b) An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes. Clim Dyn 48(3–4):727–744. https://doi.org/10.1007/s00382-016-3106-7

    Article  Google Scholar 

  • Murphy LN, Bellomo K, Cane M, Clement A (2017) The role of historical forcings in simulating the observed Atlantic multidecadal oscillation. Geophys Res Lett 44:2472–2480. https://doi.org/10.1002/2016GL071337

    Article  Google Scholar 

  • Oelsmann J, Borchert L, Hand R, Baehr J, Jungclaus JH (2020) Linking ocean forcing and atmospheric interactions to Atlantic multidecadal variability in MPI-ESM1.2. Geophys Res Lett 47:e2020GL087259. https://doi.org/10.1029/2020GL087259

    Article  Google Scholar 

  • Oldenburg D, Wills RC, Armour KC, Thompson L, Jackson LC (2021) Mechanisms of low-frequency variability in North Atlantic Ocean heat transport and AMOC. J Clim 34(12):4733–4755

    Google Scholar 

  • Omrani N-E, Keenlyside N, Matthes K, Boljka L, Zanchettin D, Jungclaus JH, Lubis SW (2022) Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. Npj Clim Atmos Sci 5:59. https://doi.org/10.1038/s41612-022-00275-1

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. https://doi.org/10.1038/NGEO995

    Article  Google Scholar 

  • Pawlowicz R (2000) M_Map: a mapping package for Matlab. University of British Columbia Earth and Ocean Sciences[Online]. http://www.eosubcca/rich/maphtml

  • Polyakov IV, Bhatt US, Simmons HL, Walsh D, Walsh JE, Zhang X (2005) Multidecadal variability of North Atlantic temperature and salinity during the Twentieth Century. J Clim 18:4562–4581

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Reick CH, Raddatz T, Brovkin V, Gayler V (2013) Representation of natural and anthropogenic land cover change in MPI-ESM. J Adv Model Earth Syst 5:459–482. https://doi.org/10.1002/jame.20022

    Article  Google Scholar 

  • Ruprich-Robert Y, Msadek R, Castruccio F, Yeager S, Delworth T, Danabasoglu G (2017) Assessing the climate impacts of the observed Atlantic Multidecadal Variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J Clim 30:2785–2810

    Article  Google Scholar 

  • Ruprich-Robert Y et al (2021) Impacts of Atlantic multidecadal variability on the tropical Pacific: a multi-model study. Npj Clim Atmos Sci 4:33

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Sy 5:146–172. https://doi.org/10.1002/jame.20015

    Article  Google Scholar 

  • Sun C, Li JP, Jin FF (2015) A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn 45:2083–2099

    Article  Google Scholar 

  • Svendsen L, Hetzinger S, Keenlyside N, Gao Y (2014) Marine-based multiproxy reconstruction of Atlantic multidecadal variability. Geophys Res Lett 41:1295–1300

    Article  Google Scholar 

  • Tandon NF, Kushner PJ (2015) Does external forcing interfere with the AMOC’s influence on north atlantic sea surface temperature? J Clim 28(16):6309–6323. https://doi.org/10.1175/JCLI-D-14-00664.1

    Article  Google Scholar 

  • Toohey M, Sigl M (2017) Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst Sci Data 9:809–831. https://doi.org/10.5194/essd-9-809-2017

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78

    Article  Google Scholar 

  • Waite AJ, Klavans JM, Clement AC, Murphy LN, Liebetrau V, Eisenhauer A, Weger RJ, Swart PK (2020) Observational and model evidence for an important role for volcanic forcing driving Atlantic Multidecadal Variability over the last 600 years. Geophys Res Lett 43:e2020GL089428. https://doi.org/10.1029/2020GL089428

    Article  Google Scholar 

  • Watanabe M, Tatebe H (2019) Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Clim Dyn 53:4651–4665

    Article  Google Scholar 

  • Wessel P, Smith WHF (1996) A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res Solid Earth 101:8741–8743. https://doi.org/10.1029/96JB00104

    Article  Google Scholar 

  • Winter A, Zanchettin D, Miller T, Kushnir Y, Black D, Lohmann G et al (2015) Persistent drying in the tropics linked to natural forcing. Nat Commun 6:7627. https://doi.org/10.1038/ncomms8627

    Article  Google Scholar 

  • Wu S, Liu Z, Zhang R, Delworth TL (2011) On the observed relationship between the Pacific decadal oscillation and the Atlantic multi-decadal oscillation. J Oceanogr 67:27–35. https://doi.org/10.1007/s10872-011-0003-x

    Article  Google Scholar 

  • Yan X, Zhang R, Knutson TR (2019) A Multivariate AMV index and associated discrepancies between observed and CMIP5 externally forced AMV. Geophys Res Lett 47:4421–4431. https://doi.org/10.1029/2019GL082787

    Article  Google Scholar 

  • Yeager S (2015) Topographic coupling of the Atlantic overturning and gyre circulations. J Phys Oceanogr 45:1258–1284. https://doi.org/10.1175/JPO-D-14-0100.1

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. https://doi.org/10.1029/2010GL043717

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40(5):1301–1318. https://doi.org/10.1007/s00382-012-1361-9

    Article  Google Scholar 

  • Zanchettin D, Bothe O, Müller W, Bader J, Jungclaus JH (2014) Different flavors of the Atlantic Multidecadal Variability. Clim Dyn 42(1–2):381–399. https://doi.org/10.1007/s00382-013-1669-0

    Article  Google Scholar 

  • Zanchettin D, Bothe O, Rubino A, Jungclaus JH (2016a) Multi-model ensemble analysis of Pacific and Atlantic SST variability in unperturbed climate simulations. Clim Dyn 47(3):1073–1090. https://doi.org/10.1007/s00382-015-2889-2

    Article  Google Scholar 

  • Zanchettin D, Bothe O, Graf HF, Omrani N-E, Rubino A, Jungclaus JH (2016b) A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability. Geophys Res Lett 43:784–792. https://doi.org/10.1002/2015GL067284

    Article  Google Scholar 

  • Zanchettin D, Timmreck C, Toohey M, Jungclaus JH, Bittner M, Lorenz SJ, Rubino A (2019) Clarifying the relative role of forcing uncertainties and initial-condition unknowns in spreading the climate response to volcanic eruptions. Geophys Res Lett. https://doi.org/10.1029/2018GL081018

    Article  Google Scholar 

  • Zhang R (2017) On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the atlantic multidecadal variability. Geophys Res Lett 44:7865–7875. https://doi.org/10.1002/2017GL074342

    Article  Google Scholar 

  • Zhang R et al (2013) Have aerosols caused the observed Atlantic multidecadal variability? J Atmos Sci 70:1135–1144. https://doi.org/10.1175/JAS-D-12-0331.1

    Article  Google Scholar 

  • Zhang R, Sutton R, Danabasoglu G, Delworth TL, Kim WM, Robson J, Yeager SG (2016) Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation.” Science 352:1527. https://doi.org/10.1126/science.aaf1660

    Article  Google Scholar 

Download references

Acknowledgements

Simulations were performed at the Deutsches Klimarechenzentrum (DKRZ). Maps are plotted with the m_map package (Pawlowicz 2000) for MATLAB software, using the GSHHG dataset for coastlines (Wessel and Smith 1996). Map colors based on http://www.ColorBrewer.org, by Cynthia A. Brewer, Penn State. We thank two anonymous reviewers for their helpful comments.

Funding

This work was supported by the German Federal Ministry of Education and Research (BMBF) within the research programme “ROMIC-II, ISOVIC” (FKZ: 01LG1909B, SWF) and the Deutsche Forschungsgemeinschaft Research Unit VolImpact (FOR2820, Grant no. 398006378, CT) within the project VolClim. N-EO is supported by the Bjerknes Climate Prediction Unit funded by the Trond Mohn Foundation (Grant BFS2018TMT01), the RCN funded ROADMAP project (Grant 316618) under a joint JPI Climate and JPI Ocean call and the Impetus4Change funded by European Union’s Horizon Europe research and innovation program (Grant 101081555).

Author information

Authors and Affiliations

Authors

Contributions

DZ conceived the study, performed the analyses, wrote the initial manuscript and revised it. SWF computed the indices. All authors contributed to discussion and finalization of the manuscript.

Corresponding author

Correspondence to Davide Zanchettin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanchettin, D., Fang, SW., Khodri, M. et al. Thermohaline patterns of intrinsic Atlantic Multidecadal Variability in MPI-ESM-LR. Clim Dyn 61, 2371–2393 (2023). https://doi.org/10.1007/s00382-023-06679-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-023-06679-w

Keywords

Navigation