Skip to main content
Log in

Changes in water status and osmolyte contents in leaves and roots of olive plants (Olea europaea L.) subjected to water deficit

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Two-year-old olive trees (Olea europaea L., cv. Coratina) were subjected to a 15-day period of water deficit, followed by 12 days of rewatering. Water deficit caused decreases in predawn leaf water potential (Ψw), relative water content and osmotic potential at full turgor (Ψπ100) of leaves and roots, which were normally restored upon the subsequent rewatering. Extracts of leaves and roots of well-watered olive plants revealed that the most predominant sugars are mannitol and glucose, which account for more than 80% of non-structural carbohydrates and polyols. A marked increase in mannitol content occurred in tissues of water-stressed plants. During water deficit, the levels of glucose, sucrose and stachyose decreased in thin roots (with a diameter <1 mm), whereas medium roots (diameter of 1–5 mm) exhibited no differences. Inorganic cations largely contribute to Ψπ100 and remained stable during the period of water deficit, except for the level of Ca2+, which increased of 25% in water-stressed plants. The amount of malate increased in both leaves and roots during the dry period, whereas citrate and oxalate decreased. Thin roots seem to be more sensitive to water deficit and its consequent effects, while medium roots present more reactivity and a higher osmotic adjustment. The results support the hypothesis that the observed decreases in Ψw and active osmotic adjustment in leaves and roots of water-stressed olive plants may be physiological responses to tolerate water deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams MD, Kubiske NE, Steiner KC (1990) Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh: photosynthesis, water relations and leaf morphology. Tree Physiol 6:305–315

    PubMed  Google Scholar 

  • Arndt ST, Wanek W, Clifford SC, Popp M (2000) Contrasting adaptations to drought stress in field-grown Ziziphus mauritiana and Prunus persica trees: water relations, osmotic adjustment and carbon isotope composition. Aust J Plant Physiol 27:985–996

    CAS  Google Scholar 

  • Bacelar EA, Moutinho-Pereira JM, Lopes JI, Gonçalves BC, Ferreira TC, Correia CM (2007) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192. doi:10.1016/j.envexpbot.2006.10.003

    Article  CAS  Google Scholar 

  • Bongi G, Long SP (1987) Light-dependent damage to photosynthesis in olive leaves during chilling and high temperature stress. Plant Cell Environ 10:241–249

    Google Scholar 

  • Cataldi TRI, Margiotta G, Iasi L, Dichio B, Xiloyannis C, Bufo SA (2000) Determination of sugar compounds in olive plant extracts by anion-exchange chromatography with pulsed amperometric detection. Anal Chem 72:3902–3907. doi:10.1021/ac000266o

    Article  PubMed  CAS  Google Scholar 

  • Chartzoulakis K, Patakas A, Bosabalidis AM (1999) Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ Exp Bot 42:113–120. doi:10.1016/S0098-8472(99)00024-6

    Article  Google Scholar 

  • Connor DJ, Fereres E (2005) The physiology of adaptation and yield expression in olive. Hortic Rev (Am Soc Hortic Sci) 31:155–229

    CAS  Google Scholar 

  • Dichio B, Xiloyannis C, Sofo A, Montanaro G (2006) Osmotic adjustment in leaves and roots of olive tree (Olea europaea L.) during drought stress and rewatering. Tree Physiol 26:179–185

    Article  PubMed  Google Scholar 

  • Fernández JE, Moreno F, Girón IF, Blázquez OM (1997) Stomatal control of water use in olive tree leaves. Plant Soil 190:179–192. doi:10.1023/A:1004293026973

    Article  Google Scholar 

  • Flora LL, Madore MA (1993) Stachyose and mannitol transport in olive (Olea europaea L.). Planta 189:484–490. doi:10.1007/BF00198210

    Article  CAS  Google Scholar 

  • Gucci R, Moing A, Gravano E, Gaudillere JP (1998) Partitioning of photosynthetic carbohydrates in leaves of salt-stressed olive plants. Aust J Plant Physiol 25:571–579

    CAS  Google Scholar 

  • Guicherd P, Peltier JP, Gout E, Bligny R, Marigo G (1997) Osmotic adjustment in Fraxinus excelsior L.: malate and mannitol accumulation in leaves under drought conditions. Trees Struct Funct 11:155–161

    Google Scholar 

  • Hanson AD, Hits ED (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33:163–203. doi:10.1146/annurev.pp.33.060182.001115

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403. doi:10.1146/annurev.arplant.47.1.377

    Article  PubMed  CAS  Google Scholar 

  • Lo Bianco R, Rieger M, Sung SJ (2000) Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol Plant 108:71–78. doi:10.1034/j.1399-3054.2000.108001071.x

    Article  CAS  Google Scholar 

  • Loescher WH (1987) Physiology and metabolism of polyols in higher plants. Physiol Plant 70:553–557. doi:10.1111/j.1399-3054.1987.tb02857.x

    Article  CAS  Google Scholar 

  • Martinoia E, Rentsch D (1994) Malate compartmentation-responses to a complex metabolism. Annu Rev Plant Physiol 45:447–467

    CAS  Google Scholar 

  • McCue KF, Hanson AD (1990) Drought and salt tolerance: towards understanding and application. Trends Biotechnol 8:358–362. doi:10.1016/0167-7799(90)90225-M

    Article  CAS  Google Scholar 

  • Moing A, Carbonne F, Rashad MH, Gaudillere JP (1992) Carbon fluxes in mature peach leaves. Plant Physiol 100:1878–1884

    Article  PubMed  CAS  Google Scholar 

  • Munns R (1988) Why measure osmotic adjustment? Aust J Plant Physiol 15:717–726

    Article  Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. WH Freeman and Company, San Francisco

    Google Scholar 

  • Nogués S, Baker NR (2000) Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J Exp Bot 51:1309–1317. doi:10.1093/jexbot/51.348.1309

    Article  PubMed  Google Scholar 

  • Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134. doi:10.1016/S1369-5266(99)80026-0

    Article  PubMed  CAS  Google Scholar 

  • Palta JP (1996) Role of calcium in plant responses to stresses: linking basic research to solution of practical problems. HortScience 31:51–57

    Google Scholar 

  • Parker WC, Pallardy SG (1987) Leaf and root osmotic adjustment in water-stressed Quercus alba, Q macrocarpa and Q stellata seedlings. Can J For Res 18:1–5. doi:10.1139/x88-001

    Article  Google Scholar 

  • Peltier JP, Marigo D, Marigo G (1997) Involvement of malate and mannitol in the diurnal regulation of the water status in members of Oleaceae. Trees Struct Funct 12:27–34

    Google Scholar 

  • Ranney TG, Bassuk NL, Whitlow TH (1991) Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry (Prunus) trees. J Am Soc Hortic Sci 116:684–688

    CAS  Google Scholar 

  • Rhodes D, Samaras Y (1994) Genetic control of osmoregulation in plants. In: Stange K (ed) Cellular and molecular physiology of cell regulation. CRC Press, Boca Raton, pp 347–361

    Google Scholar 

  • Russo VM, Karmarkar SV (1998) Water extraction of plant tissues for analysis by anion chromatography. Commun Soil Sci Plant Anal 29:245–253

    Article  CAS  Google Scholar 

  • Schulze J, Tesfaye M, Litjens RHMG, Bucciarelli B, Trepp G, Miller S et al (2002) Malate plays a central role in plant nutrition. Plant Soil 247:133–139. doi:10.1023/A:1021171417525

    Article  CAS  Google Scholar 

  • Sickler CM, Edwards GE, Kiirats O, Gao Z, Loescher W (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol 34:382–391. doi:10.1071/FP06274

    Article  CAS  Google Scholar 

  • Smith CJ (1999) Carbohydrate biochemistry. In: Lea PJ, Leegood RC (eds) Plant biochemistry and molecular biology, 2nd edn. Wiley, London, pp 87–99

    Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive tree in response to drought stress. Physiol Plant 121:58–65. doi:10.1111/j.0031-9317.2004.00294.x

    Article  PubMed  CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510. doi:10.1126/science.259.5094.508

    Article  PubMed  CAS  Google Scholar 

  • Tattini M, Gucci R, Romani A, Baldi A, Everard JD (1996) Changes in non-structural carbohydrates in olive (Olea europaea) leaves during root zone salinity stress. Physiol Plant 98:117–124. doi:10.1111/j.1399-3054.1996.tb00682.x

    Article  CAS  Google Scholar 

  • Walinga I, Van der Lee JJ, Houba VJG, Van Vark W, Novozamsky I (1995) Plant Analysis Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Wang Z, Stutte GW (1992) The role of carbohydrates in active osmotic adjustment in apple under water stress. J Am Soc Hortic Sci 117:816–823

    CAS  Google Scholar 

  • Williamson JD, Jennings DB, Guo WW, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress, and fungal resistance: Polyols-Multifunctional plant protection? J Am Soc Hortic Sci 127:467–473

    CAS  Google Scholar 

  • Xiloyannis C, Gucci R, Dichio B (2004) Irrigazione. In: Fiorino P (ed) Olea: Trattato di Olivicoltura. Il Sole 24 ORE Edagricole S.r.l., Verona, pp 365–389

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Giuseppe Montanaro, Mr. Antonio Ditaranto and Mr. Mario Pompeo for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartolomeo Dichio.

Additional information

Communicated by T. Buckley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dichio, B., Margiotta, G., Xiloyannis, C. et al. Changes in water status and osmolyte contents in leaves and roots of olive plants (Olea europaea L.) subjected to water deficit. Trees 23, 247–256 (2009). https://doi.org/10.1007/s00468-008-0272-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0272-1

Keywords

Navigation