Skip to main content
Log in

Long time dynamics of layered solutions to the shallow water equations

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We study the existence of a positive connection, i.e. a stationary solution connecting the boundary data, for the initial-boundary value problem for the viscous shallow water system in a bounded interval (−ℓ, ℓ) of the real line. Subsequently, we investigate the asymptotic behavior of the time-dependent solutions, showing that they first develop into a layered function and then they drift towards the steady state in an exponentially long time interval. The main tool of our analysis is given by the derivation of an ODE for the interface location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Alikatos, P. W. Bates and G. Fusco. Slow motion for the Cahn-Hilliard equation in one space dimension. J. Differential Equations, 90(1) (1991), 81–135.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Beck and C. E. Wayne. Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM J. Appl. Dyn. Syst., 8(3) (2009) 1043–1065.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bresch, B. Desjardins and G. Métivier. Recent Mathematical Results and Open Problems about Shallow Water Equations. Analysis and Simulation of Fluid Dynamics, Series in Advances in Mathematical Fluid Mechanics, Birkhauser Basel, (2006), 15–31.

    Google Scholar 

  4. J. Carr and R. L. Pego. Metastable patterns in solutions of ut = 2uxx - f (u). Comm. Pure Appl. Math., 42(5) (1989), 523–576.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. M. Dafermos. Hyperbolic Systems of Conservation Laws. Springer Verlag, New York (1997).

    MATH  Google Scholar 

  6. G. Fusco and J. K. Hale. Slow-motionmanifolds, dormant instability, and singular perturbations. J. Dynam. Differential Equations, 1(1) (1989), 75–94.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Kawashima. Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinburgh Sect. A, 106(1-2) (1987), 169–194.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. G. L. Laforgue and R. E. O’Malley Jr. On the motion of viscous shocks and the supersensitivity of their steady-state limits. Methods Appl. Anal., 1(4) (1994), 465–487.

    MathSciNet  MATH  Google Scholar 

  9. H.-L. Li, J. Li and Z. Xin. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm. Math. Phys., 281(2) (2008), 401–444.

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Guo, H.-L. Li and R. Lian. Dynamical behaviors for 1D compressible Navier- Stokes equations with density-dependent viscosity. J. Differential Equations, 248(8) (2010), 1926–1954.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. L. Lions. Topics in Fluids Mechanics, Vol. 1 and 2, Oxford Lectures Series in Math. and its Appl., Oxford 1996 and 1998.

    Google Scholar 

  12. C. Mascia and F. Rousset. Asymptotic Stability of Steady-states for Saint-Venant Equations with Real Viscosity, in “Analysis and simulation of fluid dynamics”, 155–162, Adv. Math. Fluid Mech., Birkhauser, Basel (2007).

    Google Scholar 

  13. C. Mascia and M. Strani. Metastability for nonlinear parabolic equations with application to scalar conservation laws. SIAM J. Math. Anal., 45(5) (2013), 3084–3113.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Mascia and M. Strani. Slow motion for compressible isentropic Navier-Stokes equations, preprint.

  15. C. Mascia and K. Zumbrun. Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal., 172(1) (2004), 93–131.

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Mascia and K. Zumbrun. Stability of viscous shock profiles for dissipative symmetric hyperbolic-parabolic systems. Comm. Pure Appl. Math., 52 (2004), 841–876.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser. A, 422(1863) (1989), 261–278.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. G. Reyna and M. J. Ward. On the exponentially slow motion of a viscous shock. Comm. Pure Appl. Math., 48(2) (1995), 79–120.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. C. Barré De Saint-Venant. Théorie du mouvement non permanent des eaux, avec application aux crues des riviéres et á l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris Sér. I Math., 73 (1871), 147–154.

    MATH  Google Scholar 

  20. M. Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Comm. Pure Appl. Anal., 13(4) (2014), 1653–1667.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Strani. Slow motion of internal shock layers for the Jin-Xin system in one space dimension. J. Dyn. Diff. Eq., 27(1) (2015), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Strani. Slow dynamics in reaction-diffusion systems, Asymptotic Analysis, 98 (2016), 131–154.

    Article  Google Scholar 

  23. X. Sun and M. J. Ward. Metastability for a generalized Burgers equation with applications to propagating flame fronts. European J. Appl. Math., 10(1) (1999), 27–53.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Wang and C. J. Xu. The Cauchy problem for viscous Shallow Water flows. Rev. Mate. Iber., 21 (2005), 1–24.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Strani.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strani, M. Long time dynamics of layered solutions to the shallow water equations. Bull Braz Math Soc, New Series 47, 765–777 (2016). https://doi.org/10.1007/s00574-016-0184-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0184-4

Keywords

Mathematical subject classification

Navigation