Skip to main content

Advertisement

Log in

Spermine cycling in mitochondria is mediated by adenine nucleotide translocase activity: mechanism and pathophysiological implications

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Spermine, besides to be transported in mitochondria by an energy dependent electrophoretic mechanism, can be also released by two different mechanisms. The first one is induced in deenergizing conditions by FCCP or antimycin A and it is mediated by an electroneutral exchange spermine protons. The second one takes place in energizing conditions during the activity of the adenine nucleotide translocase and is mediated by an electroneutral symport mechanism involving the efflux in co-transport of spermine and phosphate and the exchange of exogenous ADP with endogenous ATP. The triggering of this mechanism permits an alternating cycling of spermine across the mitochondrial membrane, that is spermine is transported or released by energized mitochondria in the absence or presence of ATP synthesis, respectively. The physiological implications of this cycling of spermine are related to the induction or prevention of mitochondrial permeability transition and, consequently, on apoptosis or its prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AdNT:

Adenine nucleotide translocase

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

MPT:

Mitochondrial permeability transition

PAO:

Polyamine oxidase

RLM:

Rat liver mitochondria

ROS:

Reactive oxygen species

mtSMO:

Mitochondrial spermine oxidizing activity

TPP+ :

Tetraphenylphosphonium

ΔΨ:

Electrical transmembrane potential

Δμ +H :

Transmembrane electrochemical gradient

References

  • Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, Toninello A, Stevanato R (2010) Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 38:353–368

    Article  CAS  PubMed  Google Scholar 

  • Bachrach U, Wang YC, Tabib A (2001) Polyamines: new cues in cellular signal transduction. News Physiol Sci 16:106–109

    CAS  PubMed  Google Scholar 

  • Bellelli A, Cavallo S, Nicolini L, Cervelli M, Bianchi M, Mariottini P, Zelli M, Federico R (2004) Mouse spermine oxidase: a model of the catalytic cycle and its inhibition by N, N1-bis(2,3-butadienyl)-1,4-butanediamine. Biochem Biophys Res Commun 322:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bonaiuto E, Grancara S, Martinis P, Stringaro A, Colone M, Agostinelli E, Macone A, Stevanato R, Vianello F, Toninello A, Di Paolo ML (2015) A novel enzyme with spermine oxidase properties in bovine liver mitochondria: identification and kinetic characterization. Free Radic Biol Med 81:88–99

    Article  CAS  PubMed  Google Scholar 

  • Cohen SS (1998) A guide to the polyamines. Oxford University, New York

    Google Scholar 

  • Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Bosch C, Miralles VJ, Hernandez-Yago J, Grisolia S (1987) Spermidine and spermine stimulate the transport of the precursor of ornithine carbamoyltransferase into rat liver mitochondria. Biochem Biophys Res Commun 149:21–26

    Article  CAS  PubMed  Google Scholar 

  • Gropp T, Brustovetsky N, Klingenberg M, Müller V, Fendler K, Bamberg E (1999) Kinetics of electrogenic transport by the ADP/ATP carrier. Biophys J 77:714–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen BD, Gunter TE (1984) The use of tetraphenylphosphonium (TPP+) to measure membrane potentials in mitochondria: membrane binding and respiratory effects. Biophys J 45:92 (abstr.)

    Google Scholar 

  • Jensen BD, Gunter KK, Gunter TE (1986) The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Arch Biochem Biophys 248:305–323

    Article  CAS  PubMed  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  PubMed  Google Scholar 

  • Karadyov JS, Kudzina L, Yu Zinchenko VP (1986) TPP+ inhibits Na+-stimulated Ca2+ efflux from brain mitochondria. Cell Calcium 7:115–119

    Article  Google Scholar 

  • Martin-Sanz P, Hopewell R, Brindley DN (1985) Spermine promotes the translocation of phosphatidate phosphohydrolase from the cytosol to the microsomal fraction of rat liver and it enhances the effects of oleate in this respect. FEBS Lett 179:262–266

    Article  CAS  PubMed  Google Scholar 

  • Neel BG, Tonks NK (1997) Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 9:193–204

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG (1982) Bioenergetics. An introduction to the chemiosmotic theory. Academic Press, Inc. Ltd: 24–28 Oval Road, London

  • Palmieri F, Klingenberg M (1979) Direct methods for measuring metabolite transport and distribution in mitochondria. Meth Enzymol 55:279–301

    Article  Google Scholar 

  • Pardee AB, Potter R (1948) Inhibition of succinic dehydrogenase by oxalacetate. J Biol Chem 176:1085–1094

    CAS  PubMed  Google Scholar 

  • Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A (2002) Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim Biophys Acta 1589:181–195

    Article  CAS  PubMed  Google Scholar 

  • Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A (2006) Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med 41:1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Schuber F (1989) Influence of polyamines on membrane functions. Biochem J 260:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Toninello A, Di Lisa F, Siliprandi D, Siliprandi N (1985) Uptake of spermine by rat liver mitochondria and its influence on the transport of phosphate. Biochim Biophys Acta 815:399–404

    Article  CAS  PubMed  Google Scholar 

  • Toninello A, Di Lisa F, Siliprandi D, Siliprandi N (1986) Action of spermine on phosphate transport in liver mitochondria. Arch Biochem Biophys 245:363–368

    Article  CAS  PubMed  Google Scholar 

  • Toninello A, Miotto G, Siliprandi D, Siliprandi N, Garlid KD (1988) On the mechanism of spermine transport in liver mitochondria. J Biol Chem 263:19407–19411

    CAS  PubMed  Google Scholar 

  • Toninello A, Dalla Via L, Siliprandi D, Garlid KD (1992) Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J Biol Chem 267:18393–18397

    CAS  PubMed  Google Scholar 

  • Toninello A, Dalla Via L, Stevanato R, Yagisawa S (2000) Kinetics and free energy profiles of spermine transport in liver mitochondria. Biochemistry 39:324–331

    Article  CAS  PubMed  Google Scholar 

  • Toninello A, Salvi M, Mondovì B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated apoptosis. Curr Med Chem 11:2349–2374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors thank Sapienza University of Rome and Italian MIUR (Ministero dell’Istruzione, dell’Universita` e della Ricerca) for Grant Support (Silvia Grancara Assegno di Ricerca) (EA), the Grant from REGIONE LAZIO Prot. FILAS-RU-2014—1020 is gratefully acknowledged (EA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Toninello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Handling Editor: E. Agostinell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grancara, S., Dalla Via, L., García-Argáez, A.N. et al. Spermine cycling in mitochondria is mediated by adenine nucleotide translocase activity: mechanism and pathophysiological implications. Amino Acids 48, 2327–2337 (2016). https://doi.org/10.1007/s00726-016-2264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2264-6

Keywords

Navigation