Skip to main content
Log in

Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, computational molecular modeling and exploration was applied to study the nature of the negative piezoelectric effect in the ferroelectric polymer polyvinylidene fluoride (PVDF), and the results confirmed by actual nanoscale measurements. First principle calculations were employed, using various quantum-chemical methods (QM), including semi-empirical (PM3) and various density functional theory (DFT) approaches, and in addition combined with molecular mechanics (MM) methods in complex joint approaches (QM/MM). Both PVDF molecular chains and a unit cell of crystalline β-phase PVDF were modeled. This computational molecular exploration clearly shows that the nature of the so-called negative piezo-electric effect in the ferroelectric PVDF polymer has a self-consistent quantum nature, and is related to the redistribution of the electron molecular orbitals (wave functions), leading to the shifting of atomic nuclei and reorganization of all total charges to the new, energetically optimal positions, under an applied electrical field. Molecular modeling and first principles calculations show that the piezoelectric coefficient d 33 has a negative sign, and its average values lies in the range of d 33  ~ −16.6 to −19.2 pC/N (or pm/V) (for dielectric permittivity ε = 5) and in the range of d 33  ~ −33.5 to −38.5 pC/N (or pm/V) (for ε = 10), corresponding to known data, and allowing us to explain the reasons for the negative sign of the piezo-response. We found that when a field is applied perpendicular to the PVDF chain length, as polarization increases the chain also stretches, increasing its length and reducing its height. For computed value of ε ~ 5 we obtained a value of d31 ~ +15.5 pC/N with a positive sign. This computational study is corroborated by measured nanoscale data obtained by atomic force and piezo-response force microscopy (AFM/PFM). This study could be useful as a basis for further insights into other organic and molecular ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tashiro K (1995) In: Nalwa HS (ed) Ferroelectric polymers. Dekker, New York, pp 63–181

    Google Scholar 

  2. Furukawa T (1989) Phase Transit 18:143–211

    Article  CAS  Google Scholar 

  3. Bune AV, Fridkin VM, Ducharme S, Blinov LM, Palto SP, Sorokin AV, Yudin SG, Zlatkin A (1998) Nature 391:874–877

    Article  CAS  Google Scholar 

  4. Blinov L, Fridkin V, Palto S, Bune A, Dowben P, Ducharme S (2000) Physics-Uspekhi 43:243–257

    Article  CAS  Google Scholar 

  5. Qu H, Yao W, Zhang J, Dusharme S, Dowben PA, Sorokin AV, Fridkin VM (2003) Appl Phys Lett 82:4322–4324

    Article  CAS  Google Scholar 

  6. Kliem H, Tardos-Morgane R (2005) J Phys D: Appl Phys 38:1860–1868

    Article  CAS  Google Scholar 

  7. Bystrov V, Bystrova N, Paramonova E, Sapronova A (2006) Ferroelectr Lett 33:153–162

    Article  CAS  Google Scholar 

  8. Bystrov VS, Bystrova NK, Paramonova EV, Vizdrik G, Sapronova AV, Kuehn M, Kliem H, Kholkin AL (2007) J Phys Condens Matter 19:456210

    Article  Google Scholar 

  9. Bystrov VS, Paramonova EV, Dekhtyar Y, Katashev A, Polyaka N, Bystrova AV, Sapronova AV, Fridkin VM, Kliem H, Kholkin AL (2011) Math Biol Bioinforma 6(2):t14–t35, http://www.matbio.org/2011/Bystrov2011(6_t14).pdf

    Google Scholar 

  10. Omote K, Ohigashi H, Koga K (1997) J Appl Phys 81(6):2760–2769

    Article  CAS  Google Scholar 

  11. Wada Y, Hayakawa R (1981) Ferroelectrics 32:115–118

    Article  CAS  Google Scholar 

  12. Broadhurst MG, Davis GT, McKinney JE, Collins RE (1978) J Appl Phys 49:4992. doi:10.1063/1.324445

    Article  CAS  Google Scholar 

  13. Purvis CK, Taylor PL (1983) J Appl Phys 54(2):1021–1028

    Article  CAS  Google Scholar 

  14. Furukawa T, Wen JX, Suzuki K, Takashina Y, Date M (1984) J Appl Phys 56:829. doi:10.1063/1.334016

    Article  CAS  Google Scholar 

  15. Tashiro K, Kobayashi M, Tadokoro H, Fukada E (1980) Macromolecules 13:691–698

    Article  CAS  Google Scholar 

  16. Nix EL, Ward IM (1986) Ferroelectrics 67:137–141

    Article  CAS  Google Scholar 

  17. HyperChem (2002) Tools for molecular modeling (release 7, 8) professional edn. Hypercube Inc, Gainesville http://www.hyper.com/?tabid=360

  18. Bystrov VS, Paramonova EV, Dekhtyar Y, Pullar RC, Katashev A, Polyaka N, Bystrova AV, Sapronova AV, Fridkin VM, Kliem H, Kholkin AL (2012) J Appl Phys 111:104113. doi:10.1063/1.4721373

    Article  Google Scholar 

  19. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264. doi:10.1063/1.477267

    Article  CAS  Google Scholar 

  20. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  21. Johnson BG, Gill PM, Pople JA (1993) J Chem Phys 98:5612-5627 doi:10.1063/1.464906

    Article  CAS  Google Scholar 

  22. Perdew JP, Chevary JA, Volsko SH et al. (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2007) Acc Chem Res 41(2):157–167

    Article  Google Scholar 

  24. Stewart JJP (2008) J Mol Model 14:499–535

    Article  CAS  Google Scholar 

  25. Stewart JJP (1989) J Comput Chem 10:209–220, 221–264

    Article  CAS  Google Scholar 

  26. Stewart JJP (2007) J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

  27. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, Oxford

    Google Scholar 

  28. Bystrov VS, Bystrova NK, Kiselev D, Paramonova EV, Kuehn M, Kliem H, Kholkin AL (2008) Integr Ferroelectr 99(1):31–40

    Article  CAS  Google Scholar 

  29. Briddon PR, Jones R (2000) Phys Status Solidi B-Basic Res 217:131–171

    Article  CAS  Google Scholar 

  30. Kepler RG, Anderson RA (1978) J Appl Phys 49:4490. doi:10.1063/1.325454

    Article  CAS  Google Scholar 

  31. Zhu G D, Zeng Z G, Zhang L, Yan X (2008) Comp Mater Sci. doi:10.1016/j.commatsci.2008.03016

    Google Scholar 

  32. Newnham RE, Sundar V, Yimnirun R, Su J, Zhang QM (1997) J Phys Chem B 101:10141–10150

    Article  CAS  Google Scholar 

  33. Yamada K et al (2001) Jpn J Appl Phys 40:4829–4836

    Article  CAS  Google Scholar 

  34. Hereida A, Bdikin I, Kopyl S, Mishina E, Semin S, Sigov A, German K, Bystrov V, Gracio J, Kholkin AL (2010) J Phys D: Appl Phys 43:462001

    Article  Google Scholar 

  35. Bdikin IK, Bystrov VS, Kopyl S et al (2012) Appl Phys Lett 100:043702. doi:10.1063/1.3676417

    Article  Google Scholar 

  36. Bdikin I, Bystrov V, Delgadillo I, Grasio J, Kopyl S, Wojtas M, Mishina E, Sigov A, Kholkin AL (2012) J Appl Phys 111:074104

    Article  Google Scholar 

  37. Bune AV, Zhu C, Ducharme S, Blinov LM, Fridkin VM, Palto SP, Petukhova NG, Yudin SG (1999) J Appl Phys 85:7869. doi:10.1063/1.370598

    Article  CAS  Google Scholar 

  38. Marcus MA (1982) Ferroelectrics 40:29–41

    Article  CAS  Google Scholar 

  39. Bystrov VS, Bdikin IK, Kiselev DA, Yudin SG, Fridkin VM, Kholkin AL (2007) J Phys D: Appl Phys 40:4571–4577

    Article  CAS  Google Scholar 

  40. Ranjan V, Nadelli MB, Bernholc J (2012) Phys Rev Lett 108:087802

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal). VSB acknowledges financial support via his FCT grant SFRH/BPD/22230/2005. IKB and RCP are thankful to FCT for partial financial support through the Ciência 2008 programme. We are also grateful to FCT project REDE/1509/RME/2005 for use of the RNME facility and to the EU-Brazil project “PodiTrodi” for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir S. Bystrov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bystrov, V.S., Paramonova, E.V., Bdikin, I.K. et al. Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J Mol Model 19, 3591–3602 (2013). https://doi.org/10.1007/s00894-013-1891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1891-z

Keywords

Navigation