Skip to main content

Advertisement

Log in

Determination of trace bismuth by under-potential deposition-stripping voltammetry at mesoporous platinum microelectrodes: application to pharmaceutical products

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A methodology for the determination of bismuth, based on under-potential deposition-stripping voltammetry (UPD-SV), was investigated. It makes use of mesoporous platinum microelectrodes (Pt-MEs) prepared by a liquid crystal templating technique. The mesoporous microelectrodes, which are characterised by a very high surface area, allowed the accumulation of relatively large amounts of bismuth at under-potential without saturation of the electrode surface. Calibration plots for quantification of bismuth at micromolar levels were constructed by using the charge involved in either the anodic or cathodic peak recoded by cyclic voltammetry that ensued the accumulation of bismuth at the electrode surface. During the anodic scan, the oxidation of metallic bismuth occurred; the cathodic scan involved irreversibly adsorbed bismuth species, which are retained on to the electrode surface. The reproducibility of the proposed UPD-SV procedure (which was within 5 %) was assured by the application to the Pt-MEs of a suitable potential waveform, properly designed to avoid memory effect due to the irreversibly deposited bismuth. The latter phenomenon along with UPD allowed to overcome interference due to copper, which is normally observed when quantification of bismuth is performed by anodic stripping voltammetry at solid electrodes involving bulk metal deposits. The usefulness of the proposed method for the determination of bismuth in real samples was demonstrated by the analysis of a tablet of a pharmaceutical preparation, which is used for curing ulcers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown RJC, Milton MJT (2005) Trends Anal Chem 24:266–274

    Article  CAS  Google Scholar 

  2. Wang J (1985) Stripping analysis: principles, instrumentation and applications. VCH, Deerfield Beach

    Google Scholar 

  3. Daniele S, Baldo MA, Bragato C (2008) Curr Anal Chem 4:215–228

    Article  CAS  Google Scholar 

  4. Švancara I, Prior C, Hočevar SB, Wang J (2010) Electroanalysis 22:1405–1420

    Article  Google Scholar 

  5. Brainina K, Neyman E (1993) Electroanalytical stripping methods. Wiley, New York

    Google Scholar 

  6. Baldo MA, Daniele S, Mazzocchin GA (1998) Electroanalysis 10:410–416

    Article  CAS  Google Scholar 

  7. Kokkinos C, Economou A (2008) Curr Anal Chem 4:183–190

    Article  CAS  Google Scholar 

  8. Hocevar SB, Švancara I, Ogorevc B, Vytřas K (2007) Anal Chem 79:8639–8643

    Article  CAS  Google Scholar 

  9. Herzog G, Arrigan DWM (2005) Trends Anal Chem 24:208–217

    Article  CAS  Google Scholar 

  10. Herrero E, Buller LJ, Abruna HD (2001) Chem Rev 101:1897–1930

    Article  CAS  Google Scholar 

  11. Kolb DM (1978) In: Gerischer H, Thomas CW (eds) Advances in electrochemistry and electrochemical engineering, vol 11. Wiley, New York, p 125

    Google Scholar 

  12. Aramata A (1997) In: Bockis JOM, White RE, Conway BE (eds) Modern aspects of electrochemistry, vol 31. Plenum Press, New York, p 181

    Chapter  Google Scholar 

  13. Lozano Sanchez P, Elliott JM (2005) Analyst 130:715–720

    Article  Google Scholar 

  14. Lozano Sanchez P, Elliott JM (2008) Analyst 133:256–262

    Article  CAS  Google Scholar 

  15. Attard GS, Bartlett PN, Coleman NRB, Ellliott JM, Owen JR, Wang JH (1997) Science 278:838–840

    Article  CAS  Google Scholar 

  16. Salvador JA, Figueiredo SA, Pinto RM, Silvestre SM (2012) Future Med Chem 4:1495–1523

    Article  CAS  Google Scholar 

  17. Elliott JM, Birkin PR, Bartlett PN, Attard GS (1999) Langmuir 15:7411–7415

    Article  CAS  Google Scholar 

  18. Birkin P, Elliot JM, Watson YE (2000) Chem Commun 17:1693–1694

    Article  Google Scholar 

  19. Evans SAG, Elliot JM, Andrews LM, Bartlett PN, Doyle PJ, Denuault G (2002) Anal Chem 74:1322–1326

    Article  CAS  Google Scholar 

  20. Daniele S, Battistel D, Bergamin S, Bragato C (2010) Electroanalysis 22:1511–1518

    Article  CAS  Google Scholar 

  21. Daniele S, Battistel D, Bragato C (2012) Electroanalysis 24:759–766

    Article  CAS  Google Scholar 

  22. Daniele S, Bergamin S (2007) Electrochem Commun 9:1388–1393

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  24. Noel M, Vasu KI (1990) Cyclic voltammetry and the frontiers of electrochemistry. Aspect Publications Ltd, London, p 347

    Google Scholar 

  25. Clavilier J, Feliu JM, Aldaz A (1988) J Electroanal Chem 243:419–433

    Article  CAS  Google Scholar 

  26. Cadle SH, Bruckenstein S (1972) Anal Chem 44:1993–2001

    Article  CAS  Google Scholar 

  27. Kang S, Lee J, Lee JK, Chung SY, Tak Y (2006) J Phys Chem B 110:7270–7274

    Article  CAS  Google Scholar 

  28. Uhm S, Yun Y, Tak Y, Lee J (2005) Electrochem Commun 7:1375–1379

    Article  CAS  Google Scholar 

  29. Tripković AV, Popovic KD, Stevanovic RM, Socha R, Kowal A (2006) Electrochem Commun 8:1492–1498

    Article  Google Scholar 

  30. Yang M (2013) J Power Sources 229:42–47

    Article  CAS  Google Scholar 

  31. Wang J, Lu J, Kirgöz UA, Hocevar SB, Ogorevc B (2001) Anal Chim Acta 434:29–34

    Article  CAS  Google Scholar 

  32. Baldo MA, Daniele S (2004) Anal Lett 37:995–1011

    Article  CAS  Google Scholar 

  33. Machado SAS, Tanaka AA, Gonzalez ER (1991) Electrochim Acta 36:1325–1331

    Article  CAS  Google Scholar 

  34. Mascaro LH, Machado SAS, Avaca L (1997) J Chem Soc Faraday Trans 93:2577–2582

    Article  CAS  Google Scholar 

  35. Miwa DW, Santos MC, Machado SAS (2006) J Braz Chem Soc 17:1339–1346

    Article  CAS  Google Scholar 

  36. Burguera M, Burguera JL, Rondon C, Garcia MI, de Pena YP, Villasmil LM (2001) J Anal At Spectrom 16:1190–1195

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Ministry of University and Scientific Research (MIUR) (PRIN-2010AXENJ8) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Daniele.

Additional information

For the special issue dedicated to Prof. Brainina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battistel, D., Daniele, S. Determination of trace bismuth by under-potential deposition-stripping voltammetry at mesoporous platinum microelectrodes: application to pharmaceutical products. J Solid State Electrochem 17, 1509–1516 (2013). https://doi.org/10.1007/s10008-013-2084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2084-5

Keywords

Navigation