Skip to main content
Log in

Hydrogel-filled micropipette contact systems for solid state electrochemical measurements

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports on the use of a novel microcapillary system for solid contact electrochemical measurements. The probe is made of moveable micropipettes, with orifice of 1–30-μm radii, filled with a conducting hydrogel, which forms a thin-gelled meniscus at the pipette end. The hydrogel is made of 2 % (w/v) agarose and water solutions, containing KCl or KNO3 as supporting electrolytes. The micropipette can be brought in contact with a conducting substrate to form a microcell, which allows performing voltammetric measurements confined within limited contact regions. The suitability of the proposed probe for local electrochemical measurements are tested using two electroactive species, dissolved in the hydrogel, namely [Fe (CN6)]4- and Ag+ ions. Mass transport characteristics of the two species, in bulk hydrogel and at micropipette meniscuses of different radii, are examined in detail in the frame of existing theory. For comparison, voltammetric measurements are also performed with micropipettes filled with the corresponding aqueous solutions. It is shown that the gel-filled micropipette, at variance with the aqueous one, prevents the spreading and leakage of solution on the sample surface. The microprobe developed here can be useful to perform electrochemical measurements on surfaces, which suffer from direct contact with liquid electrolytes. A proof-of-concept hydrogel-capillary measurement is performed to distinguish the presence of metallic silver deposited on a graphite-on-paper–based material, realized through simple pencil strokes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) Nanomedicine: Nanotechnology, Biology, and Medicine 8:916–924.

  2. Incoronato AL, Buonocore GG, Conte A, Lavorgna M, Del Nobile MA (2010) J Food Prot 73(12):2256–2262

    CAS  PubMed  Google Scholar 

  3. Rhim JW, Wang LF (2013) Hong SI. Food Hydrocoll 33(2):327–335

    CAS  Google Scholar 

  4. Wu J, Black JJ, Aldous L (2017) Electrochim Acta 225:482–492

    CAS  Google Scholar 

  5. Cao L, Yang M, Wu D, Lyu F, Sun Z, Zhong X, Pan H, Liuc H, Lu Z (2017) Chem Commun 53(10):1615–1618

    CAS  Google Scholar 

  6. Kaneko M, Nomura T, Sasaki C (2003) Macromolecular rapid communications, 24:444-446, 7.

  7. Dhanjai SA, Kalambate PK, Mugo SM, Kamau P, Chen J, Jain R (2019) Trends Anal Chem 118:488–501

    CAS  Google Scholar 

  8. Belmont-Hébert C, Tercier ML, Buffle J, Fiaccabrino GC, De Rooij NF, Koudelka-Hep M (1998) Anal Chem 70(14):2949–2956

    Google Scholar 

  9. Lee MH, Kim YT (1999) Electrochemical and solid-state. Letters 2(2):72–74

    CAS  Google Scholar 

  10. Cano E, Crespo A, Lafuente D, Barat BR (2014) Electrochem Commun 41:16–19

    CAS  Google Scholar 

  11. Barat BR, Cano E (2015) Electrochim Acta 182:751–762

    Google Scholar 

  12. Barat BR, Cano E, Letardi P (2018) Sensors Actuators B 261:572–580

    Google Scholar 

  13. Di Turo F, Matricardi P, Di Meo C, Mazzei F, Favero G, Zane D (2019) J Cult Herit 37:113–120

    Google Scholar 

  14. Di Turo F, De Vito C, Coletti F, Mazzei F, Antiochia R, Favero G (2017) Microchem J 134:154–163

    Google Scholar 

  15. Liu L, Etienne M, Walcarius A (2018) Anal Chem 90(15):8889–8895

    CAS  PubMed  Google Scholar 

  16. Dang N, Etienne M, Walcarius A, Liu L (2018) Electrochem Commun 97:64–67

    CAS  Google Scholar 

  17. Kang H, Hwang S, Kwak J (2015) Nanoscale 7(3):994–1001

    CAS  PubMed  Google Scholar 

  18. Ebejer N, Guell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR (2013) Annu Rev Anal Chem 6(1):329–351

    CAS  Google Scholar 

  19. Rodolfa KT, Bruckbauer A, Zhou D, Korchev YE, Klenerman D (2005) Angw Chem Int Ed 44(42):6854–6859

    CAS  Google Scholar 

  20. Suter T, Bohni H (1997) Electrochim Acta 42:3275–3280

    CAS  Google Scholar 

  21. Bohni H, Suter T, Assi F (2000) Surf Coat Technol 130(1):80–86

    CAS  Google Scholar 

  22. Lohrengel MM, Rosenkranz C, Kluppel I, Moehring A, Bettermann H, Van den Bossche B, Deconinck J (2004) Electrochim Acta 49:2863–2870

    CAS  Google Scholar 

  23. Andreatta F, Lohrengel MM, Terryn H, De Wit JHW (2003) Electrochim Acta 48:3239–3247

    CAS  Google Scholar 

  24. Vignal V, Krawiec H, Heintz O, Oltra R (2007) Electrochim Acta 52:4994–5001

    CAS  Google Scholar 

  25. Souto RM, Izquierdo J, Santana J, Gonzalez S (2013) Eur J Sci Technol 9:71–89

    Google Scholar 

  26. Ho HLT, Dryfe RAW (2009) Langmuir 25(21):12757–12765

    CAS  PubMed  Google Scholar 

  27. Shao Y, Mirkin MV (1998) Anal Chem 70(15):3155–3161

    CAS  PubMed  Google Scholar 

  28. Macpherson JV, Unwin PR (1999) Anal Chem 71(20):4642–4648

    CAS  Google Scholar 

  29. Dossi N, Toniolo R, Pizzariello A, Impellizzieri F, Piccin EG, Bontempelli G (2013) Electrophoresis 34:2085–2091

    CAS  PubMed  Google Scholar 

  30. Battistel D, Pecchielan G, Daniele S (2014) Chem.ElectroChem 1(1):140–146

    Google Scholar 

  31. Saito Y (1968) Rev Polarogr 15(6):177–187

    CAS  Google Scholar 

  32. Lindsey G, Abercrombie S, Denuault G, Daniele S, De Faveri E (2007) Anal Chem 79(7):2952–2956

    CAS  PubMed  Google Scholar 

  33. Littauer EL, Shreir LL (1966) Electrochim Acta 11(5):527–536

    CAS  Google Scholar 

  34. Horányi G, Vértes G (1973) J Electroanal Chem Interfacial Electrochem 45(2):295–299

    Google Scholar 

  35. Daniele S, Battistel D, Bergamin S, Bragato C (2010) Electroanalysis 22(13):1511–1518

    CAS  Google Scholar 

  36. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. John Wiley & Sons

  37. Zhang M, Xiong L, Compton RG (2013) Anal. Methods 5:3473–3481

    CAS  Google Scholar 

  38. Bragato C, Daniele S, Baldo MA, Denuault G (2002) Ann Chim 92(3):153–161

    CAS  PubMed  Google Scholar 

  39. Csoka B, Nagy G (2004) J Biochem Biophys Methods 61:57–56

    CAS  PubMed  Google Scholar 

  40. Williams CG, Edwards MA, Colley AL, Macpherson JV, Unwin PR (2009) Anal Chem 81(7):2486–2495

    CAS  PubMed  Google Scholar 

  41. Nicholson RS (1965) Anal Chem 37(6):667–671

    CAS  Google Scholar 

  42. Aoki KJ, Chen J, Liu Y, Jia B (2020) J Electroanal Chem 856:11369

    Google Scholar 

  43. Scharifker B, Hills GJ (1981) J Electroanal Chem 130:81–97

    CAS  Google Scholar 

  44. Baldo MA, Bragato C, Mazzocchin GA, Daniele S (1998) Electrochim Acta 43:3413–3422

    CAS  Google Scholar 

  45. Pasquale MA, Marchiano SL, Bolzán AE, Arvia AJ (2003) J Appl Electrochem 33(5):431–441

    CAS  Google Scholar 

  46. von Stackelberg M, Pilgram M, Toome V (1953) Z Elektrochem 57:342–350

    CAS  Google Scholar 

  47. Xiang C, Xie Q, Hu J, Yao S (2005) J Electroanal Chem 584(2):201–209

    CAS  Google Scholar 

  48. Pecchielan G, Baldo MA, Fabris S, Daniele S (2019) J Electroanal Chem 847:113166

    Google Scholar 

  49. Hasse U, Scholz F (2006) J Solid State Electrochem 10(6):380–382

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Daniele.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnici, M., Daniele, S. Hydrogel-filled micropipette contact systems for solid state electrochemical measurements. J Solid State Electrochem 24, 2861–2869 (2020). https://doi.org/10.1007/s10008-020-04651-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04651-w

Keywords

Navigation