Skip to main content

Advertisement

Log in

Recent advances in the direct electrochemical detection of drugs of abuse

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the last decade, the trafficking and use of illicit drugs showed a continuous incremental trend, remaining worldwide a challenging problem for the consequences on society, health, criminality, and environment. The introduction on the market of new products and of illicit synthetic compounds represents a new challenging task for analytical chemistry, looking for rapid and accurate methods for the detection of illicit substances in seized street samples, biological fluids, and wastewater. In this context, electrochemical sensors have shown promising results as an alternative to standard chromatographic and spectroscopic methods. This review aims at highlighting the most recent progresses in the use of electrochemistry for the detection of drugs of abuse, mainly including well consolidated substances like cannabinoids, cocaine, opioids, ecstasy, and methamphetamine as well as new psychoactive molecules widely diffused at the present time. Different strategies have been described particularly consisting in the direct electrochemical oxidation of the target analyte. The implementation of tailor-made portable instruments with electrochemical detection methods constitutes an added value to improve the effectiveness of electrochemical sensors for the identification of psychoactive substances when performing large-scale sampling tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. EMCDDA (European Monitoring Centre for Drugs and Drug Addiction): European drug report: trends and developments. Publications office of the European Union 2019. http://www.emcdda.europa.eu/system/files/publications/11364/20191724_TDAT19001ENN_PDF.pdf Access 15 May 2020

  2. UNODC (United Nations Office on Drugs and Crime): World drug report. United Nations publication 2019. https://wdr.unodc.org/wdr2019/prelaunch/WDR19_Booklet_1_EXECUTIVE_SUMMARY.pdf Access 15 May 2020

  3. Cirrincione M, Zanfrognini B, Pigani L, Protti M, Mercolini L, Zanardi C (2020) Carbon black modified electrodes for the detection of cannabinoids in vegetable extracts. Talanta submitted

  4. Renaud-Young M, Mayall RM, Salehi V, Goledzinowski M, Comeau FJE, MacCallum JL, Birss VI (2019) Development of an ultra-sensitive electrochemical sensor for Δ9-tetrahydrocannabinol (THC) and its metabolites using carbon paper electrodes. Electrochim Acta 307:351–359. https://doi.org/10.1016/j.electacta.2019.02.117

    Article  CAS  Google Scholar 

  5. Balbino MA, de Oliveira LS, Eleotério IC, Oiye EN, Ribeiro MFM, McCord BR, Ipólito AJ, de Oliveira MF (2016) The application of voltammetric analysis of Δ9-THC for the reduction of false positive results in the analysis of suspected marijuana plant matter. J Forensic Sci 61(4):1067–1073. https://doi.org/10.1111/1556-4029.13059

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Q, Berg D, Mugo SM (2019) Molecularly imprinted carbon based electrodes for tetrahydrocannabinol sensing. Inorg Chem Commun 107:107459. https://doi.org/10.1016/j.inoche.2019.107459

    Article  CAS  Google Scholar 

  7. Wang H, Zhang A, Cui H, Liu D, Liu R (1998) Adsorptive stripping voltammetric determination of phenol at an electrochemically pretreated carbon-paste electrode with solid paraffin as a binder. Microchem J 59(3):448–456. https://doi.org/10.1006/mchj.1998.1629

    Article  CAS  Google Scholar 

  8. Pigani L, Seeber R, Bedini A, Dalcanale E, Suman M (2014) Adsorptive-stripping voltammetry at PEDOT-modified electrodes. Determination of epicatechin. Food Anal Method 7(4):754–760. https://doi.org/10.1007/s12161-013-9678-5

    Article  Google Scholar 

  9. Nissim R, Compton RG (2014) Introducing absorptive stripping voltammetry: wide concentration range voltammetric phenol detection. Analyst 139(22):5911–5918. https://doi.org/10.1039/C4AN01417K

    Article  CAS  PubMed  Google Scholar 

  10. Balbino MA, de Menezes MMT, Eleotério IC, Saczk AA, Okumura LL, Tristão HM, de Oliveira MF (2012) Voltammetric determination of Δ9-THC in glassy carbon electrode: an important contribution to forensic electroanalysis. Forensic Sci Int 221(1-3):29–32. https://doi.org/10.1016/j.forsciint.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  11. Nissim R, Compton RG (2015) Absorptive stripping voltammetry for cannabis detection. Chem Cent J 9(1):41. https://doi.org/10.1186/s13065-015-0117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Balbino MA, Oiye EN, Ribeiro MFM, Cruz Júnior JW, Eleotério IC, Ipólito AJ, de Oliveira MF (2016) Use of screen-printed electrodes for quantification of cocaine and Δ9-THC: adaptions to portable systems for forensic purposes. J Solid State Electrochem 20(9):2435–2443. https://doi.org/10.1007/s10008-016-3145-3

    Article  CAS  Google Scholar 

  13. Balbino MA, Eleotério IC, de Oliveira LS, de Menezes MMT, de Andrade JF, Ipólito AJ, de Oliveira MF (2014) A comparative study between two different conventional working electrodes for detection of Δ9-tetrahydrocannabinol using square-wave voltammetry: a new sensitive method for forensic analysis. J Braz Chem Soc 25:589–596. https://doi.org/10.5935/0103-5053.20140040

    Article  CAS  Google Scholar 

  14. Lowe ER, Banks CE, Compton RG (2005) Indirect detection of substituted phenols and cannabis based on the electrochemical adaptation of the Gibbs reaction. Anal Bioanal Chem 383(3):523–531. https://doi.org/10.1007/s00216-005-0043-4

    Article  CAS  PubMed  Google Scholar 

  15. Goodwin A, Banks CE, Compton RG (2006) Graphite micropowder modified with 4-amino-2,6-diphenylphenol supported on basal plane pyrolytic graphite electrodes: micro sensing platforms for the indirect electrochemical detection of Δ9-tetrahydrocannabinol in saliva. Electroanal 18(11):1063–1067. https://doi.org/10.1002/elan.200603518

    Article  CAS  Google Scholar 

  16. Mishra RK, Sempionatto JR, Li Z, Brown C, Galdino NM, Shah R, Liu S, Hubble LJ, Bagot K, Tapert S, Wang J (2020) Simultaneous detection of salivary Δ9-tetrahydrocannabinol and alcohol using a wearable electrochemical ring sensor. Talanta 211:120757. https://doi.org/10.1016/j.talanta.2020.120757

    Article  CAS  PubMed  Google Scholar 

  17. Du Y, Chen C, Yin J, Li B, Zhou M, Dong S, Wang E (2010) Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Anal Chem 82(4):1556–1563. https://doi.org/10.1021/ac902566u

    Article  CAS  PubMed  Google Scholar 

  18. Jiang B, Wang M, Chen Y, Xie J, Xiang Y (2012) Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification. Biosens Bioelectron 32(1):305–308. https://doi.org/10.1016/j.bios.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  19. Hashemi P, Bagheri H, Afkhami A, Ardakani YH, Madrakian T (2017) Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection. Anal Chim Acta 996:10–19. https://doi.org/10.1016/j.aca.2017.10.035

    Article  CAS  PubMed  Google Scholar 

  20. Oueslati R, Cheng C, Wu J, Chen J (2018) Highly sensitive and specific on-site detection of serum cocaine by a low cost aptasensor. Biosens Bioelectron 108:103–108. https://doi.org/10.1016/j.bios.2018.02.055

    Article  CAS  PubMed  Google Scholar 

  21. Tavakkoli N, Soltani N, Mohammadi F (2019) A nanoporous gold-based electrochemical aptasensor for sensitive detection of cocaine. RCS Adv 9(25):14296–14301. https://doi.org/10.1039/c9ra01292c

    Article  CAS  Google Scholar 

  22. de Jong M, Florea A, de Vries A-M, van Nuijs ALN, Covaci A, Van Durme F, Martins JC, Samyn N, De Wael K (2018) Levamisole: a common adulterant in cocaine street samples hindering electrochemical detection of cocaine. Anal Chem 90(8):5290–5297. https://doi.org/10.1021/acs.analchem.8b00204

    Article  CAS  PubMed  Google Scholar 

  23. de Jong M, Sleegers N, Kim J, Van Durme F, Samyn N, Wang J, De Wael K (2016) Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders. Chem Sci 7(3):2364–2370. https://doi.org/10.1039/c5sc04309c

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rocha RG, Stefano JS, Arantes IVS, Ribeiro MMAC, Santana MHP, Richter EM, Munoz RAA (2019) Simple strategy for selective determination of levamisole in seized cocaine and pharmaceutical samples using disposable screen-printed electrodes. Electroanal 31(1):153–159. https://doi.org/10.1002/elan.201800716

    Article  CAS  Google Scholar 

  25. Ameku WA, de Araujo WR, Rangel CJ, Ando RA, Paixão TRLC (2019) Gold nanoparticle paper-based dual-detection device for forensics applications. ACS Appl Nano Mater 2(9):5460–5468. https://doi.org/10.1021/acsanm.9b01057

    Article  CAS  Google Scholar 

  26. Florea A, Cowen T, Piletsky S, De Wael K (2019) Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst 144(15):4639–4646. https://doi.org/10.1039/c9an00618d

    Article  CAS  PubMed  Google Scholar 

  27. Smolinska-Kempisty K, Sheej Ahmad O, Guerreiro A, Karim K, Piletska E, Piletsky S (2017) New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection. Biosens Bioelectron 96:49–54. https://doi.org/10.1016/j.bios.2017.04.034

    Article  CAS  PubMed  Google Scholar 

  28. Poltorak L, Eggink I, Hoitink M, Sudhölter EJR, de Puit M (2018) Electrified soft interface as a selective sensor for cocaine detection in street samples. Anal Chem 90(12):7428–7433. https://doi.org/10.1021/acs.analchem.8b00916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Couto RAS, Costa SS, Mounssef B Jr, Pacheco JG, Fernandes E, Carvalho F, Rodrigues CMP, Delerue-Matos C, Braga AAC, Moreira Gonçalves L, Quinaz MB (2019) Electrochemical sensing of ecstasy with electropolymerized molecularly imprinted poly(o-phenylenediamine) polymer on the surface of disposable screen-printed carbon electrodes. Sensor Actuat B-Chem 290:378–386. https://doi.org/10.1016/j.snb.2019.03.138

    Article  CAS  Google Scholar 

  30. da Silva ATM, Bessa CDPB, Borges WS, Borges KB (2019) Bioanalytical methods for determining ecstasy components in biological matrices: a review. Trac-Trend Anal Chem 108:323–346. https://doi.org/10.1016/j.trac.2018.08.001

    Article  CAS  Google Scholar 

  31. Doménech A, Aucejo R, Alarcón J, Navarro P (2004) Electrocatalysis of the oxidation of methylenedioxyamphetamines at electrodes modified with cerium-doped zirconias. Electrochem Commun 6(7):719–723. https://doi.org/10.1016/j.elecom.2004.05.013

    Article  CAS  Google Scholar 

  32. Doménech A, Navarro P, Arán VJ, Muro B, Montoya N, García-España E (2010) Selective electrochemical discrimination between dopamine and phenethylamine-derived psychotropic drugs using electrodes modified with an acyclic receptor containing two terminal 3-alkoxy-5-nitroindazole rings. Analyst 135(6):1449–1455. https://doi.org/10.1039/c0an00082e

    Article  CAS  PubMed  Google Scholar 

  33. Narang J, Singhal C, Khanuja M, Mathur A, Jain A, Pundir CS (2018) Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug. Artif Cell Nanomed B 46:1586–1593. https://doi.org/10.1080/21691401.2017.1381614

    Article  CAS  Google Scholar 

  34. Cumba LR, Smith JP, Zuway KY, Sutcliffe OB, do Carmo DR, Banks CE (2016) Forensic electrochemistry: simultaneous voltammetric detection of MDMA and its fatal counterpart “Dr Death” (PMA). Anal Methods 8:142–152 https://doi.org/10.1039/c5ay02924d, 1

  35. Bartlett C-A, Taylor S, Fernandez C, Wanklyn C, Burton D, Enston E, Raniczkowska A, Black M, Murphy L (2016) Disposable screen printed sensor for the electrochemical detection of methamphetamine in undiluted saliva. Chem Cent J 10(1):3. https://doi.org/10.1186/s13065-016-0147-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akhoundian M, Alizadeh T, Ganjali MR, Norouzi P (2019) Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs-modified electrode. Talanta 200:115–123. https://doi.org/10.1016/j.talanta.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  37. Proksa B, Molnár L (1978) Voltammetric determination of morphine on stationary platinum and graphite electrodes. Anal Chim Acta 97(1):149–154. https://doi.org/10.1016/S0003-2670(01)83284-0

    Article  CAS  Google Scholar 

  38. Garrido JMPJ, Delerue-Matos C, Borges F, Macedo TRA, Oliveira-Brett AM (2004) Voltammetric oxidation of drugs of abuse. I. Morphine and metabolites. Electroanal 16(17):1419–1426. https://doi.org/10.1002/elan.200302966

    Article  CAS  Google Scholar 

  39. Jordan PH, Hart JP (1991) Voltammetric behaviour of morphine at a glassy carbon electrode and its determination in human serum by liquid chromatography with electrochemical detection under basic conditions. Analyst 116(10):991–996. https://doi.org/10.1039/AN9911600991

    Article  CAS  PubMed  Google Scholar 

  40. Garrido JMPJ, Delerue-Matos C, Borges F, Macedo TRA, Oliveira-Brett AM (2004) Voltammetric oxidation of drugs of abuse. I. Heroin and metabolites. Electroanal 16(18):1497–1502. https://doi.org/10.1002/elan.200302975

    Article  CAS  Google Scholar 

  41. Navaee A, Salimi A, Teymourian H (2012) Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens Bioelectron 31(1):205–211. https://doi.org/10.1016/j.bios.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  42. Pournaghi-Azar MH, Saadatirad A (2008) Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. J Electroanal Chem 624(1-2):293–298. https://doi.org/10.1016/j.jelechem.2008.09.016

    Article  CAS  Google Scholar 

  43. Seeber R, Terzi F, Zanardi C (2014) Functional materials in amperometric sensing: polymeric, inorganic, and nanocomposite materials for modified electrodes. Scholz F (Ed.), Springer-Verlag, Heidelberg https://doi.org/10.1007/978-3-662-45103-8

  44. Seeber R, Pigani L, Terzi F, Zanardi C (2015) Amperometric sensing. A melting pot for material, electrochemical, and analytical sciences. Electrochim Acta 179:350–363. https://doi.org/10.1016/j.electacta.2015.03.074

    Article  CAS  Google Scholar 

  45. Abraham P, Renjini S, Vijayan P, Nisha V, Sreevalsan K, Anithakumary V (2020) Review on the progress in electrochemical detection of morphine based on different modified electrodes. J Electrochem Soc 167(3):037559. https://doi.org/10.1149/1945-7111/ab6cf6

    Article  CAS  Google Scholar 

  46. Bagheri H, Khoshsafar H, Afkhamib A, Amidi S (2016) Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J Chem 40:7102–7112. https://doi.org/10.1039/c6nj00505e

    Article  CAS  Google Scholar 

  47. Afsharmanesh E, Karimi-Maleh H, Pahlavan A, Vahedi J (2013) Electrochemical behavior of morphine at ZnO/CNT nanocomposite room temperature ionic liquid modified carbon paste electrode and its determination in real samples. J Mol Liq 181:8–13. https://doi.org/10.1016/j.molliq.2013.02.002

    Article  CAS  Google Scholar 

  48. Maccaferri G, Terzi F, Xia Z, Vulcano F, Liscio A, Palermo V, Zanardi C (2019) Highly sensitive amperometric sensor for morphine detection based on electrochemically exfoliated graphene oxide. Application in screening tests of urine samples. Sensor Actuat B-Chem 281:739–745. https://doi.org/10.1016/j.snb.2018.10.163

    Article  CAS  Google Scholar 

  49. Taei M, Hasanpour F, Hajhashemi V, Movahedi M, Baghlani H (2016) Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2–Zn2SnO4 nanocomposites paste electrode. Appl Surf Sci 363:490–498. https://doi.org/10.1016/j.apsusc.2015.12.074

    Article  CAS  Google Scholar 

  50. Sanati AL, Karimi-Maleh H, Badiei A, Biparva P, Ensafi AA (2014) A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mat Sci Eng C-Mater 35:379–385. https://doi.org/10.1016/j.msec.2013.11.031

    Article  CAS  Google Scholar 

  51. Kumary VA, Abraham P, Renjini S, Kumara Swamy BE, Nancy TEM, Sreevalsan A (2019) A novel heterogeneous catalyst based on reduced graphene oxide supported copper coordinated amino acid—a platform for morphine sensing. J Electroanal Chem 850:113367. https://doi.org/10.1016/j.jelechem.2019.113367

    Article  CAS  Google Scholar 

  52. Bahrami G, Ehzari H, Mirzabeigy S, Mohammadi B, Arkan E (2020) Fabrication of a sensitive electrochemical sensor based on electrospun magnetic nanofibers for morphine analysis in biological samples. Mat Sci Eng C-Mater 106:110183. https://doi.org/10.1016/j.msec.2019.110183

    Article  CAS  Google Scholar 

  53. Wester N, Mynttinen E, Etula J, Lilius T, Kalso E, Kauppinen EI, Laurila T, Koskinen J (2019) Simultaneous detection of morphine and codeine in the presence of ascorbic acid and uric acid and in human plasma at nafion single-walled carbon nanotube thin-film electrode. ACS Omega 4(18):17726–17734. https://doi.org/10.1021/acsomega.9b02147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dronova M, Smolianitski E, Lev O (2016) Electrooxidation of new synthetic cannabinoids: voltammetric determination of drugs in seized street samples and artificial saliva. Anal Chem 88(8):4487–4494. https://doi.org/10.1021/acs.analchem.6b00368

    Article  CAS  PubMed  Google Scholar 

  55. Sanli S, Ghorbani-Zamani F, Moulahoum H, Gumus ZP, Coskunol H, Demirkol DO, Timur S (2019) Application of biofunctionalized magnetic nanoparticles based-sensing in abused drugs diagnostics. Anal Chem 92(1):1033–1040. https://doi.org/10.1021/acs.analchem.9b04025

    Article  CAS  PubMed  Google Scholar 

  56. Balaban S, Man E, Durmus C, Bor G, Ceylan AE, Gumus ZP, Evran S, Coskunol H, Timur S (2020) Sensor platform with a custom-tailored aptamer for diagnosis of synthetic cannabinoids. Electroanal 32(3):656–665. https://doi.org/10.1002/elan.201900670

    Article  CAS  Google Scholar 

  57. Smith JP, Metters JP, Khreit OIG, Sutcliffe OB, Banks CE (2014) Forensic electrochemistry applied to the sensing of new psychoactive substances: electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples. Anal Chem 86(19):9985–9992. https://doi.org/10.1021/ac502991g

    Article  CAS  PubMed  Google Scholar 

  58. Tan F, Smith JP, Sutcliffe OB, Banks CE (2015) Regal electrochemistry: sensing of the synthetic cathinone class of new psychoactive substances (NPSs). Anal Methods 7(16):6470–6474. https://doi.org/10.1039/c5ay01820j

    Article  CAS  Google Scholar 

  59. Elbardisy HM, García-Miranda Ferrari A, Foster CW, Sutcliffe OB, Brownson DAC, Belal TS, Talaat W, Daabees HG, Banks CE (2019) Forensic electrochemistry: the electroanalytical sensing of mephedrone metabolites. ACS Omega 4(1):1947–1954. https://doi.org/10.1021/acsomega.8b02586

    Article  CAS  Google Scholar 

  60. Souza GA, Arantes LC, Guedes TJ, de Oliveira AC, Marinho PA, Muñoz RAA, dos Santos WTP (2017) Voltammetric signatures of 2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamines on boron-doped diamond electrodes: detection in blotting paper samples. Electrochem Commun 82:121–124. https://doi.org/10.1016/j.elecom.2017.08.001

    Article  CAS  Google Scholar 

  61. Andrade AFB, Kasahun Mamo S, Gonzalez-Rodriguez J (2017) Rapid screening method for new psychoactive substances of forensic interest: electrochemistry and analytical determination of phenethylamines derivatives (NBOMe) via cyclic and differential pulse voltammetry. Anal Chem 89(3):1445–1452. https://doi.org/10.1021/acs.analchem.6b02426

    Article  CAS  PubMed  Google Scholar 

  62. Andrade AFB, Gonzalez-Rodriguez J (2019) Electroanalytical identification of 25I-NBOH and 2C-I via differential pulse voltammetry: a rapid and sensitive screening method to avoid misidentification. Analyst 144(9):2965–2972. https://doi.org/10.1039/c9an00062c

    Article  CAS  Google Scholar 

  63. Cumba LR, Kolliopoulos AK, Smith JP, Thompson PD, Evans PR, Sutcliffe OB, do Carmo DR, Banks CE CE (2015) Forensic electrochemistry: indirect electrochemical sensing of the components of the new psychoactive substance “synthacaine”. Analyst 140(16):5536–5545. https://doi.org/10.1039/c5an00858a

    Article  CAS  PubMed  Google Scholar 

  64. Honeychurch KC (2019) Review of electroanalytical-based approaches for the determination of benzodiazepines. Biosensors 9(4):130. https://doi.org/10.3390/bios9040130

    Article  CAS  PubMed Central  Google Scholar 

  65. de Carvalho LM, Correia D, Garcia SC, de Bairros AV, do Nascimento PC, Bohrer D (2010) A new method for the simultaneous determination of 1,4-benzodiazepines and amfepramone as adulterants in phytotherapeutic formulations by voltammetry. Foren Sci Int 202:75–81 https://doi.org/10.1016/j.forsciint.2010.04.030, 1-3

  66. Lozano-Chaves ME, Palacios-Santander JM, Cubillana-Aguilera LM, Naranjo-Rodríguez I, Hidalgo-Hidalgo-de-Cisneros JL (2006) Modified carbon-paste electrodes as sensors for the determination of 1,4-benzodiazepines: application to the determination of diazepam and oxazepam in biological fluids. Sensor Actuat B-Chem 115(2):575–583. https://doi.org/10.1016/j.snb.2005.10.021

    Article  CAS  Google Scholar 

  67. Doménech-Carbó A, Martini M, de Carvalho LM, Viana C, Doménech-Carbó MT, Silva M (2013) Screening of pharmacologic adulterant classes in herbal formulations using voltammetry of microparticles. J Pharm Biomed Anal 74:194–204. https://doi.org/10.1016/j.jpba.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  68. Doménech-Carbó A, Martini M, de Carvalho LM, Viana C, Doménech-Carbó MT, Silva M (2013) Standard additions-dilution method for absolute quantification in voltammetry of microparticles. Application for determining psychoactive 1,4-benzodiazepine and antidepressants drugs as adulterants in phytotherapeutic formulations. J Pharm Biomed Anal 80:159–163. https://doi.org/10.1016/j.jpba.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  69. Mendes LF, e Silva ÂRS, Bacil RP, Serrano SHP, Angnes L, Paixão TRLC, de Araujo WR (2019) Forensic electrochemistry: electrochemical study and quantification of xylazine in pharmaceutical and urine samples. Electrochim Acta 295:726–734. https://doi.org/10.1016/j.electacta.2018.10.120

    Article  CAS  Google Scholar 

  70. Smith JP, Metters JP, Kampouris DK, Lledo-Fernandez C, Sutcliffe OB, Banks CE (2013) Forensic electrochemistry: the electroanalytical sensing of Rohypnol® (flunitrazepam) using screen-printed graphite electrodes without recourse for electrode or sample pre-treatment. Analyst 138(20):6185–6191. https://doi.org/10.1039/c3an01352a

    Article  CAS  PubMed  Google Scholar 

  71. Tseliou F, Pappas P, Spyrou K, Hrbac J, Prodromidis MI (2019) Lab-on-a-screen-printed electrochemical cell for drop-volume voltammetric screening of flunitrazepam in untreated, undiluted alcoholic and soft drinks. Biosens Bioelectron 132:136–142. https://doi.org/10.1016/j.bios.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  72. Ramdani O, Metters JP, Figueiredo-Filho LCS, Fatibello-Filho O, Banks CE (2013) Forensic electrochemistry: sensing the molecule of murder atropine. Analyst 138(4):1053–1059. https://doi.org/10.1039/c2an36450f

    Article  CAS  PubMed  Google Scholar 

  73. Oliveira TDC, Santana MHP, Banks CE, Abarza Munoz RA, Richter EM (2019) Electrochemical portable method for on site screening of scopolamine in beverage and urine samples. Electroanal 31:567–574. https://doi.org/10.1002/elan.201800707

    Article  CAS  Google Scholar 

  74. Goodchild SA, Hubble LJ, Mishra RK, Li Z, Goud KY, Barfidokht A, Shah R, Bagot KS, McIntosh AJS, Wang J (2019) Ionic liquid-modified disposable electrochemical sensor strip for analysis of fentanyl. Anal Chem 91(5):3747–3753. https://doi.org/10.1021/acs.analchem.9b00176

    Article  CAS  PubMed  Google Scholar 

  75. Barfidokht A, Mishra RK, Seenivasan R, Liu S, Hubble LJ, Wang J, Hall DA (2019) Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sensor Actuat B-Chem 296:126422. https://doi.org/10.1016/j.snb.2019.04.053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Università di Modena e Reggio Emilia for the financial support in the frame of Interdisciplinary FAR2019: “Novel analytical tools for the determination of cannabinoids in Cannabis sativa L. based products and biological fluids.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Zanardi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanfrognini, B., Pigani, L. & Zanardi, C. Recent advances in the direct electrochemical detection of drugs of abuse. J Solid State Electrochem 24, 2603–2616 (2020). https://doi.org/10.1007/s10008-020-04686-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04686-z

Keywords

Navigation