Skip to main content
Log in

Multiple-scan voltammetry of immobilized particles of ancient copper/bronze coins

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The application of a multiple-scan strategy to study the structure of the corrosion patina of copper/bronze ancient objects using the voltammetry of immobilized microparticles (VIMP) is described. Upon nanosample attachment to graphite electrodes in contact with aqueous acetate buffer, voltammetric signatures characterizing cuprite with variable degree of crystallinity are recorded by means of successive cathodic scans reflecting the composition of the corrosion patina. The reported methodology, complemented with ion beam-field emission scanning electron microscopy (FIB-FESEM) and high-resolution field emission scanning electron microscopy (HRFESM-EDX), is applied to a set of coins fabricated between 1709 and 1962 revealing different corrosion patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scott DA (1991) Metallography and microstructure of ancient and historic metals. The Getty Conservation Institute, Paul Getty Museum, Malibu

    Google Scholar 

  2. Scott DA (1994) An examination of the patina and corrosion morphology of some Roman bronzes. J Am Inst Conservat 33(1):1–23

    Article  Google Scholar 

  3. Robbiola L, Blengino JM, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological CuSn alloys. Corros Sci 40(12):2083–2111

    Article  CAS  Google Scholar 

  4. Constantinides I, Adriaens A, Adams F (2002) Surface characterization of artificial corrosion layers on copper alloy reference materials. Appl Surf Sci 189(1-2):90–101

    Article  CAS  Google Scholar 

  5. Ingo GM, Angelini E, de Caro T, Bultrini G, Calliari I (2004) Combined use of GDOES, SEM+EDS, XRD, and OM for the microchemical study of the corrosion products on archaeological bronzes. Appl Phys A Mater Sci Process 79(2):199–203

    Article  CAS  Google Scholar 

  6. Serghini-Idrissi M, Bernard MC, Harrif FZ, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V, Ziani M (2005) Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochim Acta 50(24):4699–4709

    Article  CAS  Google Scholar 

  7. Ingo GM, de Caro T, Riccucci C, Angelini E, Grassini S, Balbi S, Bernardini P, Salvi D, Bousselmi L, C'Ilingiroglu A, Gener M, Gouda VK, Al Jarrah O, Khosroff S, Mahdjoub Z, Al Saad Z, El-Saddik W, Vassiliou P (2006) Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl Phys A Mater Sci Process 83(4):513–520

    Article  CAS  Google Scholar 

  8. Robbiola L, Portier R (2006) A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J Cult Herit 7(1):1–12

    Article  Google Scholar 

  9. Sandu I, Marutoiu C, Sandu IG, Alexandru A, Sandu A (2006) Authentication of old bronze coins I. study on archaeological Patina. Acta Univ Cibinensis Sec F Chem 9:39–53

    CAS  Google Scholar 

  10. Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L (2007) Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim Acta 52(27):7760–7769

    Article  CAS  Google Scholar 

  11. Bernard MC, Joiret S (2009) Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochim Acta 54(22):5199–5205

    Article  CAS  Google Scholar 

  12. Campanella L, Colacicchi Alessandri O, Ferretti M, Plattner SH (2009) The effect of tin on dezincification of archaeological copper alloys. Corros Sci 51(9):2183–2191

    Article  CAS  Google Scholar 

  13. Costa V, Leyssens K, Adriaens A, Richard N, Scholz F (2010) Electrochemistry reveals archaeological materials. J Solid State Electrochem 14(3):449–451

    Article  CAS  Google Scholar 

  14. Alberghina MF, Barraco R, Brai M, Schillaci T, Tranchina L (2011) Integrated analytical methodologies for the study of corrosion processes in archaeological bronzes. Spectrochim Acta B 66(2):129–137

    Article  CAS  Google Scholar 

  15. Griesser M, Kockelmann W, Hradil K, Traum R (2016) New insights into the manufacturing technique and corrosion of high leaded antique bronze coins. Microchem J 126:181–193

    Article  CAS  Google Scholar 

  16. Inberg A, Ashkenazi D, Cohen M, Iddan N, Cvikel D (2018) Corrosion products and microstructure of copper alloy coins from the byzantine-period Ma’agan Mikhael B shipwreck, Israel. Microchem J 143:400–409

    Article  CAS  Google Scholar 

  17. Crosera M, Baracchini E, Prenesti E, Giacomello A, Callegher B, Oliveri P, Adami G (2019) Elemental characterization of surface and bulk of copper-based coins from the byzantine-period by means of spectroscopic techniques. Microchem J 147:422–428

    Article  CAS  Google Scholar 

  18. Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and droplets, 2nd edn. Springer, Berlin-Heidelberg

    Google Scholar 

  19. Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report). Pure Appl Chem 85:609–631

    Article  CAS  Google Scholar 

  20. Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration (monographs in electrochemistry series, Scholz F, Ed). Springer, Berlin-Heidelberg

    Book  Google Scholar 

  21. Doménech-Carbó A (2010) Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. J Solid State Electrochem 14(3):363–379

    Article  CAS  Google Scholar 

  22. Doménech-Carbó A (2011) Tracing, authentifying and dating archaeological metal using the voltammetry of microparticles. Anal Methods 3(10):2181–2188

    Article  CAS  Google Scholar 

  23. Doménech-Carbó A, Doménech-Carbó MT (2018) Electroanalytical techniques in archaeological and art conservation. Pure Appl Chem 90(3):447–462

    Article  CAS  Google Scholar 

  24. Arjmand F, Adriaens A (2012) Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem 16(2):535–543

    Article  CAS  Google Scholar 

  25. Blum D, Leyffer W, Holze R (1996) Pencil-leads as new electrodes for abrasive stripping voltammetry. Electroanalysis 8(3):296–297

    Article  CAS  Google Scholar 

  26. Costa V, Urban F (2005) Lead and it alloys: metallurgy, deterioration and conservation. Rev Conserv 6:48–62

    CAS  Google Scholar 

  27. Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA (2011) ‘One-touch’ voltammetry of microparticles for the identification of corrosion products in archaeological lead. Electroanalysis 23(6):1391–1400

    Article  CAS  Google Scholar 

  28. Souissi N, Bousselmi L, Khosrof S, Triki E (2004) Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Mater Corros 55(4):284–292

    Article  CAS  Google Scholar 

  29. Doménech-Carbó A, Doménech-Carbó MT, Martínez-Lázaro I (2008) Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchim Acta 162(3-4):351–359

    Article  CAS  Google Scholar 

  30. Satovic D, Martinez S, Bobrowski A (2010) Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta 81(4-5):1760–1765

    Article  CAS  PubMed  Google Scholar 

  31. Di Turo F, Montoya N, Piquero-Cilla J, De Vito C, Coletti F, Favero G, Doménech-Carbó A (2017) Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal Chim Acta 955:36–47

    Article  PubMed  CAS  Google Scholar 

  32. Doménech-Carbó A, Doménech-Carbó MT, Montagna E, Álvarez-Romero C, Lee Y (2017) Electrochemical discrimination of mints: the last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta 169:50–56

    Article  PubMed  CAS  Google Scholar 

  33. Doménech-Carbó A, Doménech-Carbó MT, Álvarez-Romero C, Montoya N, Pasíes-Oviedo T, Buendía-Ortuño M (2017) Electrochemical characterization of coinage techniques the 17th century: the maravedís case. Electroanalysis 29(9):2008–2018

    Article  CAS  Google Scholar 

  34. Doménech-Carbó MT, Álvarez-Romero C, Doménech-Carbó A, Osete-Cortina L, Martínez-Bazán ML (2019) Microchemical surface analysis of historic copper-based coins by the combined use of FIB-FESEM-EDX, OM, FTIR spectroscopy and solid-state electrochemical techniques. Microchem J 148:573–581

    Article  CAS  Google Scholar 

  35. Doménech-Carbó A, Doménech-Carbó MT, Álvarez-Romero C, Pasíes-Oviedo T, Buendía M (2019) Screening of Iberian coinage in the 2th-1th BCE period using the voltammetry of immobilized particles. Electroanalysis 31(6):1164–1173

    Article  CAS  Google Scholar 

  36. Doménech-Carbó A, Bernabeu-Aubán J (2019) Correlation between lead isotope analysis and solid-state electrochemistry for determining the provenance of archaeological bronze. J Solid State Electrochem 23(10):2803–2812

    Article  CAS  Google Scholar 

  37. Doménech-Carbó A, Doménech-Carbó MT, Capelo S, Pasíes-Oviedo T, Martínez-Lázaro I (2014) Dating archaeological copper/bronze artifacts using the voltammetry of microparticles. Angew Chem Int Ed 53(35):9262–9266

    Article  CAS  Google Scholar 

  38. Doménech-Carbó A, Doménech-Carbó MT, Redondo-Marugan J, Osete-Cortina L, Barrio J, Fuentes A, Vivancos-Ramon MV, Al-Sekhaneh W, Martinez B, Martinez-Lazaro I, Pasies-Oviedo T (2018) Electrochemical characterization and dating of archaeological leaded bronze objects using the voltammetry of immobilized particles. Archaeometry 60(2):308–324

    Article  CAS  Google Scholar 

  39. Di Turo F, Montoya N, Piquero-Cilla J, De Vito C, Coletti F, Favero G, Doménech-Carbó MT, Doménech-Carbó A (2018) Dating archaeological strata in the magna mater temple using solid-state voltammetric analysis of leaded bronze coins. Electroanalysis 30(2):361–370

    Article  CAS  Google Scholar 

  40. Doménech-Carbó A (2015) Dating: an analytical task. ChemTexts 1:5

    Article  Google Scholar 

  41. Doménech-Carbó A (2017) Electrochemical dating: a review. J Solid State Electrochem 21(7):1987–1998

    Article  CAS  Google Scholar 

  42. Doménech-Carbó A, Scholz F (2019) Electrochemical age determinations of metallic specimens – the utilization of the corrosion clock. Acc Chem Res 52(2):400–406

    Article  PubMed  CAS  Google Scholar 

  43. Doménech-Carbó A, Doménech-Carbó MT, Martínez-Lázaro I (2010) Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles approach. Anal Chim Acta 610:1–9

    Article  CAS  Google Scholar 

  44. Lovric M, Scholz F (1997) A model for the propagation of a redox reaction through microcrystals. J Solid State Electrochem 1:108–113

    Article  CAS  Google Scholar 

  45. Lovric M, Hermes M, Scholz F (1998) The effect of the electrolyte concentration in the solution on the voltammetric response of insertion electrodes. J Solid State Electrochem 2:401–404

    Article  CAS  Google Scholar 

  46. Oldham KB (1998) Voltammetry at a three-phase junction. J Solid State Electrochem 2(6):367–377

    Article  CAS  Google Scholar 

  47. Lovric M, Scholz F (1999) A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem 3:172–175

    Article  CAS  Google Scholar 

  48. Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F (2000) Modelling of solid state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. J Solid State Electrochem 4(6):314–324

    Article  Google Scholar 

  49. Ferragud-Adam X, Piquero-Cilla J, Doménech-Carbó MT, Guerola-Blay V, Company X, Doménech-Carbó A (2017) Electrochemical analysis of gildings in Valencia altarpieces: a cross-age study since 15th until 20th century. J Solid State Electrochem 21:1477–1148

    Article  CAS  Google Scholar 

  50. Martínez B, Piquero-Cilla J, Montoya N, Doménech-Carbó MT, Doménech-Carbó A (2018) Electrochemical analysis of gold embroidery threads from archaeological textiles. J Solid State Electrochem 22(7):2205–2215

    Article  CAS  Google Scholar 

  51. Doménech-Carbó A, Scholz F, Doménech-Carbó MT, Piquero-Cilla J, Montoya N, Pasíes-Oviedo T, Gozalbes M, Melchor-Montserrat JM, Oliver A (2018) Dating of archaeological gold by means of solid state electrochemistry. ChemElectroChem 5(15):2113–2117

    Article  CAS  Google Scholar 

  52. Doménech-Carbó A, Scholz F, Brauns M, Tiley-Nel S, Oliver A, Aguilella G, Montoya N, Doménech-Carbó MT (2020) Electrochemical dating of archaeological gold based on refined peak current determinations and Tafel analysis. Electrochim Acta 337:135759

    Article  CAS  Google Scholar 

  53. Di Turo F, Parra R, Piquero-Cilla J, Favero G, Doménech-Carbó A (2019) Crossing VIMP and EIS for studying heterogeneous sets of copper/bronze coins. J Solid State Electrochem 23(3):771–781

    Article  CAS  Google Scholar 

  54. Di Fazio M, Felici AC, Catalli F, Doménech-Carbó MT, De Vito C, Doménech-Carbó A (2020) Solid-state electrochemical characterization of emissions and authorities producing Roman brass coins. Microchem J 152:104306

    Article  CAS  Google Scholar 

  55. Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Voltammetry of solid microparticles immobilized on electrode surfaces, electroanalytical chemistry, a series of advances, vol 20. Marcel Dekker, New York, pp 1–86

    Google Scholar 

Download references

Acknowledgments

Project CTQ2017-85317-C2-1-P, supported with Ministerio de Economía, Industria y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (ERDF) and Agencia Estatal de Investigación (AEI), is gratefully acknowledged. The authors wish to thank Mr. Manuel Planes, Dr. José Luis Moya and Alicia Nuez Imbernón technical supervisors of the Electron Microscopy Service of the Polytechnical University of Valencia.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 255 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doménech-Carbó, A., Donnici, M., Álvarez-Romero, C. et al. Multiple-scan voltammetry of immobilized particles of ancient copper/bronze coins. J Solid State Electrochem 25, 195–206 (2021). https://doi.org/10.1007/s10008-020-04770-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04770-4

Keywords

Navigation