Skip to main content
Log in

Protolysis studies and quantification of acids and bases in aqueous solutions by microelectrode voltammetry

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Acid–base equilibria are generally studied and taught at universities using approaches and techniques that include the use of dyes, spectrophotometry, conductometry, and potentiometry. Instead, voltammetric techniques, although employed for research purposes for acid–base investigations, have rarely been included in electrochemical curricula. In this article, we highlight the potential of microelectrode voltammetry in studying acid–base equilibria, their kinetics, and the acid and base content in aqueous solutions by exploiting the hydrogen and oxygen evolution reactions. Microelectrodes are used as they allow the attainment of reproducible and well-defined convergent mass-transport conditions and the achievement of steady-state diffusion regimes in short times. The resulting steady-state limiting current is proportional to bulk concentration, diffusion coefficient, and electrode radius, which is useful for a more precise evaluation of each of latter quantities. Mention is also made on how mathematical treatments and digital simulation procedures can help in the classification and parameterization of the electrode processes involved.

Graphical abstract

Hydrogen and oxygen evolution from neutral and acid or base aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Butler JN, Cogley DR (1998) Ionic equilibrium: solubility and pH calculations. Wiley, New York

  2. Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1. https://doi.org/10.1007/978-3-030-17180-3

  3. Eknoyan G (2022) Acid–base homeostasis: a historical inquiry of its origins and conceptual evolution. Nephrol Dial Transplant 37:1816–1823. https://doi.org/10.1093/ndt/gfac014

    Article  PubMed  Google Scholar 

  4. Lücke FK, Adams MR (2023) Chapter 22 - acids and fermentation. In: Andersen V, Lelieveld H, Motarjemi Y (eds) Food safety management, Second Edition. Academic Press, San Diego, pp 439–452. https://doi.org/10.1016/B978-0-12-820013-1.00020-6

    Chapter  Google Scholar 

  5. Garsany Y, Pletcher D, Hedges B (2002) Speciation and electrochemistry of brines containing acetate ion and carbon dioxide. J Electroanal Chem 538–539:285–297. https://doi.org/10.1016/S0022-0728(02)00728-3

    Article  Google Scholar 

  6. Salarirada MM, Behnamfardb A, Veglio F (2021) Desalination and water treatment. Removal of xanthate from aqueous solutions by adsorption onto untreated and acid/base treated activated carbons. Desalin Eater Treat 212:220–223. https://doi.org/10.5004/dwt.2021.26683

    Article  CAS  Google Scholar 

  7. Domínguez JR, Durán-Valle CJ, Mateos-García G (2022) Synthesis and characterisation of acid/basic modified adsorbents. Application for chlorophenols removal. Environ Res 207:112187. https://doi.org/10.1016/j.envres.2021.112187

  8. Kassier JP (1982) Historical perspectives In: Cohen JJ, Kassier JP (eds) Acid-base. Little Brown, Boston

  9. Hildebrand JH (1981) A history of solution theory. Ann Rev Phys Chem 32:1–24

    Article  ADS  CAS  Google Scholar 

  10. Arrhenius S (1903) Development of the theory of electrolyte dissociation. Nobel Lectures 11 December 1903. https://www.nobelprize.org/prizes/chemistry/1903/arrhenius/lecture/. Accessed 20 Jun 2023

  11. Malkin HM (2003) Historical review: concept of acid-base balance in medicine. Ann Clin Lab Sci 33:337–344

    CAS  PubMed  Google Scholar 

  12. Kauffman GBJ (1988) The Brønsted-Lowry acid-base concept Chem Educ 59:28–31

    Google Scholar 

  13. Brønsted JN (1923) Some remarks on the concept of acids and bases. Recl Trav Chim Pays-Bas 42:718–728

    Google Scholar 

  14. Jensen WB (1980) The Lewis acid-base concepts: an overview. Wiley, New York. http://www.scribd.com/doc/52094935/The-Lewis-Acid-Base-Concepts-William-B-Jensen#scribd

  15. McNaught AD (1997) IUPAC. Compendium of chemical terminology (the “Gold Book”), 2nd edn. Blackwell Scientific Publications, Oxford. https://doi.org/10.1351/goldbook

    Book  Google Scholar 

  16. Bell RP (1959) The hydronium in chemistry. Methuen, London

    Google Scholar 

  17. Kolthoff IM, Elving PJ (1961) Treatise on analytical chemistry, 2nd edn. Interscience Encyclopedia, New York

    Google Scholar 

  18. Aroti A, Leontidis E (2001) Simultaneous determination of the ionization constant and the solubility of sparingly soluble drug substances. A physical chemistry experiment. J Chem Educ 78:786. https://doi.org/10.1021/ed078p786

  19. Nyasulu F, McMills L, Barlag R (2013) Weak acid ionization constants and the determination of weak acid–weak base reaction equilibrium constants in the general chemistry laboratory. J Chem Educ 90:768–770. https://doi.org/10.1021/ed300403v

    Article  CAS  Google Scholar 

  20. Yimkosol W, Dangkulwanich M (2021) Finding the pKa values of a double-range indicator thymol blue in a remote learning activity. J Chem Educ 98:3930–3934. https://doi.org/10.1021/acs.jchemed.1c00122

    Article  CAS  Google Scholar 

  21. Heyrovsky J, Kuta J (1965) Principles of polarography. Prague. https://doi.org/10.1016/C2013-0-10851-3

    Article  Google Scholar 

  22. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, USA

    Google Scholar 

  23. Opekar F, Beran P (1976) Rotating disk electrodes. J Electroanal Chem Interfacial Electrochem 69:1–105. https://doi.org/10.1016/S0022-0728(76)80129-5

    Article  CAS  Google Scholar 

  24. Vetter KJ (1967) Electrochemical kinetics-theoretical and experimental aspects. In: Academic Press (ed). New York

  25. Stulík K, Amatore C, Holub K, Marecek V, Kutner W (2000) Microelectrodes. Definitions, characterization, and applications. Pure Appl Chem 72:1483–1492. https://doi.org/10.1351/pac200072081483

  26. Daniele S, Denuault G (2014) From microelectrodes to scanning electrochemical microscopy. In: Pletcher D, Tian Z-Q, Williams DE (eds) Developments in electrochemistry. Science inspired by Martin Fleischmann. Wiley, New York, USA, pp 223–244. https://doi.org/10.1002/9781118694404.ch12

  27. Montenegro MI, Queirós MA, Daschbach JL (1991) Microelectrodes: theory and applications. NATO ASI Ser E Appl Sci 197. Kluwer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-94-011-3210-7

  28. Wightman RM, Wipf DO (1989) Voltammetry at ultramicroelectrodes. In: Bard AJ (ed) Electroanalytical chemistry. A series of advances, vol 15. Marcel Dekker, New York, USA, pp 267–344

  29. Fleischmann M, Pons S, Rolison DR, Schmidt PP (1987) Ultramicroelectrodes. Datatech Systems and Technology Inc, Morganton, NC, USA

  30. Wang J (2023) Analytical electrochemistry. In: Sons, John Willey & Sons I (ed). Hoboken, NJ, USA, p 240

  31. Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17. https://doi.org/10.1007/s40828-015-0016-y

    Article  Google Scholar 

  32. Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA, Camoes MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure Appl Chem 74:2169–2200

    Article  CAS  Google Scholar 

  33. Compton RG, Banks CE (2018) Understanding voltammetry, 3rd edn. Imperial College Press, London

    Book  Google Scholar 

  34. Newell DB, Tiesinga E (2019) The International System of Units (SI). NIST Special Publication, Gaithersburg, Maryland. https://doi.org/10.6028/NIST.SP.330-2019

    Book  Google Scholar 

  35. Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarog 15:177–187. https://doi.org/10.5189/revpolarography.15.177

    Article  CAS  Google Scholar 

  36. Daniele S, Bragato C (2014) From macroelectrodes to microelectrodes. Theory and properties. In: Environmental analysis by electrochemical sensors and biosensors. Springer New York

  37. Daniele S, Lavagnini I, Baldo MA, Magno F (1996) Steady state voltammetry at microelectrodes for the hydrogen evolution from strong and weak acids under pseudo-first and second order kinetic conditions. J Electroanal Chem 404:105–111. https://doi.org/10.1016/0022-0728(95)04348-9

    Article  Google Scholar 

  38. Jaworski A, Donten M, Stojek Z, Osteryoung JG (1999) Conditions of strict voltammetric reversibility of the h(+)/h(2) couple at platinum electrodes. Anal Chem 71:243–246. https://doi.org/10.1021/ac9804240

    Article  CAS  PubMed  Google Scholar 

  39. Jiao X, Batchelor-McAuley C, Kätelhön E, Ellison J, Tschulik K, Compton RG (2015) The subtleties of the reversible hydrogen evolution reaction arising from the nonunity stoichiometry. J Phys Chem C 119:9402–9410. https://doi.org/10.1021/acs.jpcc.5b01864

    Article  CAS  Google Scholar 

  40. Qin SF, Cheng FF, Le-Xing You LX, Jian-Jun Sun JJ (2022) Fundamentals on kinetics of hydrogen redox reaction at a polycrystalline platinum disk electrode. J Phys Chem 922:116788. https://doi.org/10.1016/j.jelechem.2022.116788

  41. Zhou M, Bao S, Bard AJ (2019) Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J Am Chem Soc 141:7327–7332. https://doi.org/10.1021/jacs.8b13366

    Article  CAS  PubMed  Google Scholar 

  42. Macpherson JV, Unwin PR (1997) Determination of the diffusion coefficient of hydrogen in aqueous solution using single and double potential step chronoamperometry at a disk ultramicroelectrode. Anal Chem 69:2063–2069. https://doi.org/10.1021/ac961211i

    Article  CAS  PubMed  Google Scholar 

  43. Ciszkowska M, Stojek Z, Morris SE, Osteryoung JG (1992) Steady-state voltammetry of strong and weak acids with and without supporting electrolyte. Anal Chem 64:2372–2377. https://doi.org/10.1021/ac00044a013

    Article  CAS  Google Scholar 

  44. Bockris JO'M, Reddy AKN (1970) Modern electrochemistry. In: Modern electrochemistry. New York, pp 381–387

  45. Bockris JO'M, Reddy AKN (1970) Modern electrochemistry. In: Modern electrochemistry. New York, pp 550–552

  46. Daniele S, Ugo P, Mazzochin GA, Rudello D (1992) Effects of dispersed phases in naturally occurring fluids on the electroreduction of Ru(NH3)6Cl3. Mackay RA and Texter J Eds. VCH, New York

  47. Daniele S, Bragato C, Baldo MA, Mori G, Giannetto M (2001) A novel approach for the determination of the total concentration of acids in aqueous solutions by simultaneous diffusion limited current for reduction of acids and pH measurements. Anal Chim Acta 432:27–37. https://doi.org/10.1016/S0003-2670(00)01362-3

    Article  CAS  Google Scholar 

  48. Stackelberg MV, Pilgram M (1960) Diffusionskoeffizient des wasserstoffions in wässrigen KCl-Lösungen 25:2974–2976

    Google Scholar 

  49. Lanning JA, Chambers JQ (1973) Voltammetric study of the hydrogen ion/hydrogen couple in acetonitrile/water mixtures. Anal Chem 45:1010–1016. https://doi.org/10.1021/ac60329a002

    Article  CAS  Google Scholar 

  50. Chen Q, Luo L (2018) Correlation between gas bubble formation and hydrogen evolution reaction kinetics at nanoelectrodes. Langmuir 34:4554–4559. https://doi.org/10.1021/acs.langmuir.8b00435

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Zu Y, Bard AJ (2000) Scanning electrochemical microscopy: part 39. The hydronium/hydrogen mediator system and its application to the study of the electrocatalysis of hydrogen oxidation. J Electroanal Chem 491:22–29. https://doi.org/10.1016/S0022-0728(00)00100-5

    Article  CAS  Google Scholar 

  52. Jaworski A, Donten M, Stojek Z (1999) Migration and diffusion coupled with a fast preceding reaction. Voltammetry at a microelectrode. Anal Chem 71(1):167–173

    Article  CAS  PubMed  Google Scholar 

  53. Wetsema BJC, Mom HJM, Los JM (1976) Pulse polarography: IX. Hydronium diffusion in aqueous sulphate solution. J Electroanal Chem Interfacial Electrochem 68:139–147. https://doi.org/10.1016/S0022-0728(76)80002-2

    Article  CAS  Google Scholar 

  54. Lee SH, Rasaiah JC (2011) Hydronium transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water. J Chem Phys 135:124505. https://doi.org/10.1063/1.3632990

  55. Tomeš J (1937) Polarographic studies with the dropping mercury kathode. LXIII. Verification of the equation of the polarographic wave in the reversible electrodeposition of free kations. Collect Czechoslov Chem Commun 9:12–21. https://doi.org/10.1135/cccc19370012

    Article  Google Scholar 

  56. Bond AM, Oldham KB, Zoski CG (1989) Steady-state voltammetry. Anal Chim Acta 216:177–230. https://doi.org/10.1016/S0003-2670(00)82009-7

    Article  CAS  Google Scholar 

  57. Gómez-Gil JM, Laborda E, Molina A (2020) General explicit mathematical solution for the voltammetry of nonunity stoichiometry electrode reactions: diagnosis criteria in cyclic voltammetry. Anal Chem 92:3728–3734. https://doi.org/10.1021/acs.analchem.9b05023

    Article  CAS  PubMed  Google Scholar 

  58. González J, Laborda E, Serna C, Torralba E, Molina A (2021) Steady state voltammetry of charge transfer processes with nonunity electrode reaction orders. J Electroanal Chem 896:115206. https://doi.org/10.1016/j.jelechem.2021.115206

  59. Nürnberg HW (1964) Proceedings of the third international congress of polarography. Southampton, pp 149–186

  60. Stojek Z, Ciszkowska M, Osteryoung JG (1994) Self-enhancement of voltammetric waves of weak acids in the absence of supporting electrolyte. Anal Chem 66:1507–1512. https://doi.org/10.1021/ac00081a024

    Article  CAS  Google Scholar 

  61. Bragato C, Daniele S, Baldo MA (2005) Low frequency square-wave voltammetry of weak acids at platinum microelectrodes. Electroanalysis 17:1370–1378. https://doi.org/10.1002/elan.200503281

    Article  CAS  Google Scholar 

  62. Ciszkowska M, Stojek Z, Osteryong JG (1995) Voltammetric reduction of polyprotic acids at the platinum microelectrode: dependence on supporting electrolyte. J Electroanal Chem 398:49–56. https://doi.org/10.1016/0022-0728(95)04246-X

    Article  Google Scholar 

  63. Kanzaki Y, Tokuda K, Bruckenstein S (2014) Dissociation rates of weak acids using sinusoidal hydrodynamic modulated rotating disk electrode employing Koutecky-Levich equation. J Electrochem Soc 161:H770–H779. https://doi.org/10.1149/2.0221412jes

    Article  CAS  Google Scholar 

  64. Fleischmann M, Lasserre F, Robinson J, Swan D (1984) The application of microelectrodes to the study of homogeneous processes coupled to electrode reactions: part I. EC′ and CE reactions. J Electroanal Chem Interfacial Electrochem 177:97–114. https://doi.org/10.1016/0022-0728(84)80215-6

    Article  CAS  Google Scholar 

  65. Nürnberg HW, Dürbeck HW, Wolff G (1967) Die voltammetrische bestimmung der geschwindigkeitskonstanten der dissoziation und rekombination einiger carbonsäuren mit strukturell bedingten abweichungen vom normalverhalten. Z Phys Chem 52:144–169. https://doi.org/10.1524/zpch.1967.52.1_4.144

    Article  Google Scholar 

  66. Eigen M, Eyring EM (1962) Fast protolytic reactions in aqueous solutions of aminobenzoic acids. J Am Chem Soc 84:3254–3256. https://doi.org/10.1021/ja00876a008

    Article  CAS  Google Scholar 

  67. Staples BR, Turner DJ, Atkinson G (1969) An apparatus for the determination of rates of hydronium transfer and other very fast reactions. Instrum Sci Technol 2:127–147. https://doi.org/10.1080/10739146908543273

    Article  CAS  Google Scholar 

  68. Daniele S, Lavagnini I, Baldo MA, Magno F (1998) Voltammetry for reduction of hydrogen ions from mixtures of mono- and polyprotic acids at platinum microelectrodes. Anal Chem 70:285–294. https://doi.org/10.1021/ac970666k

    Article  CAS  Google Scholar 

  69. Albery WJ (1966) Effect of the dissociation of water on electrochemical studies involving hydrogen ions. Trans Faraday Soc 62:1575–1582. https://doi.org/10.1039/TF9666201575

    Article  CAS  Google Scholar 

  70. Chen H, Kätelhön E, Haonan L, Compton RG (2021) Use of artificial intelligence in electrode reaction mechanism studies: predicting voltammograms and analyzing the dissociative CE Reaction at a hemispherical electrode. Anal Chem 93:13360–13372. https://doi.org/10.1021/acs.analchem.1c03154

    Article  CAS  PubMed  Google Scholar 

  71. Oldham KB (1996) Effect of diffusion coefficient diversity on steady-state voltammetry when homogeneous equilibria and migration are encountered. Anal Chem 68:4173–4179. https://doi.org/10.1021/ac9601730

    Article  CAS  PubMed  Google Scholar 

  72. Jaworski A, Stojek Z, Osteryoung JG (1995) A simple theoretical model for the self-enhancement of the cathodic voltammetric waves of weak acids. Anal Chem 67:3349–3352. https://doi.org/10.1021/ac00114a035

    Article  CAS  Google Scholar 

  73. Daniele S, Baldo MA, Simonetto F (1996) Assessment of linearity between steady-state limiting current and analytical concentration of weak acids in the reaction of hydrogen evolution. Anal Chim Acta 331:117–123. https://doi.org/10.1016/0003-2670(96)00188-2

    Article  CAS  Google Scholar 

  74. Canhoto C, Matos M, Rodrigues A, Geraldo MD, Bento MF (2004) Voltammetric analysis of weak acids with microelectrodes. J Electroanal Chem 570:63–67. https://doi.org/10.1016/j.jelechem.2004.03.015

    Article  CAS  Google Scholar 

  75. Li T, Xu J, Zhou L, Wang L, Sun Y, Cheng J, Yuan M, Wang L, Yue Y, Wang J (2013) Voltammetric determination of the adsorption kinetics of acetic acid on activated carbon. J Electrochem Soc 160:H568. https://doi.org/10.1149/2.033309jes

    Article  CAS  Google Scholar 

  76. Lide DR (2010) CRC handbook of chemistry and physics, 88th edn. CRC Press/Taylor&Francis Group, Boca Raton, FL, USA

    Google Scholar 

  77. Burkell JE, Spinks JWT (1952) Measurements of self-diffusion in aqueous solutions of sodium dihydrogen phosphate. Can J Chem 30:311–319. https://doi.org/10.1139/v52-042

    Article  CAS  Google Scholar 

  78. Daniele S, Baldo MA, Bragato C, Lavagnini I (1998) Steady state voltammetry in the process of hydrogen evolution in buffer solutions. Anal Chim Acta 361:141–150. https://doi.org/10.1016/S0003-2670(97)00695-8

    Article  CAS  Google Scholar 

  79. Oldham KB (1981) Edge effects in semiinfinite diffusion. J Electroanal Chem Interfacial Electrochem 122:1–17. https://doi.org/10.1016/S0022-0728(81)80136-2

    Article  CAS  Google Scholar 

  80. Heinze J (1981) Diffusion processes at finite (micro) disk electrodes solved by digital simulation. J Electroanal Chem Interfacial Electrochem 124:73–86. https://doi.org/10.1016/S0022-0728(81)80285-9

    Article  CAS  Google Scholar 

  81. Matos M, Canhoto C, Bento MF, Geraldo MD (2010) Simultaneous evaluation of the dissociated and undissociated acid concentrations by square wave voltammetry using microelectrodes. J Electroanal Chem 647:144–149. https://doi.org/10.1016/j.jelechem.2010.06.010

    Article  CAS  Google Scholar 

  82. Daniele S, Bragato C, Baldo MA (2002) Square wave voltammetry of strong acids at platinum microelectrodes. Electrochem commun 4:374–378. https://doi.org/10.1016/S1388-2481(02)00320-X

    Article  CAS  Google Scholar 

  83. Abdelsalam ME, Denuault G, Baldo MA, Daniele S (1998) Voltammetry of hydroxide ion in aqueous solutions on gold microelectrodes. J Electroanal Chem 449:5–7. https://doi.org/10.1016/S0022-0728(98)00053-9

    Article  CAS  Google Scholar 

  84. Ordeig O, Banks C, Davies T, Del Campo F, Muñoz F, Compton R (2006) Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution. Anal Sci 22:679–683. https://doi.org/10.2116/analsci.22.679

    Article  CAS  PubMed  Google Scholar 

  85. Abdelsalam ME, Denuault G, Baldo MA, Bragato C, Daniele S (2001) Detection of hydroxide ions in aqueous solutions by steady-state voltammetry. Electroanalysis 13:289–294. https://doi.org/10.1002/1521-4109(200103)13:4%3c289::AID-ELAN289%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  86. Ciani I, Daniele S (2004) Oxidation of hydroxide ions from dilute unbuffered solutions of ammonia at platinum microdiscs surrounded by thick and thin insulating sheaths. J Electroanal Chem 564:133–140. https://doi.org/10.1016/j.jelechem.2003.09.032

    Article  CAS  Google Scholar 

  87. Irkham EY (2019) Oxidation of hydroxide ions in weak basic solutions using boron-doped diamond electrodes: effect of the buffer capacity. Analyst 144:4499–4504. https://doi.org/10.1039/C9AN00505F

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Amer MS, Ghanem MA, Al-Mayouf AM (2020) Hydroxide ion oxidation using low-symmetry mesoporous titanium dioxide (lsm-TiO2) electrode. J Electroanal Chem 871:114268. https://doi.org/10.1016/j.jelechem.2020.114268

  89. Pašti I, Lazarević-Pašti T, Mentus S (2012) Switching between voltammetry and potentiometry in order to determine H+ or OH ion concentration over the entire pH scale by means of tungsten disk electrode. J Electroanal Chem 665:83–89. https://doi.org/10.1016/j.jelechem.2011.11.019

    Article  CAS  Google Scholar 

  90. Mudrinić T, Mojović Z, Rabi-Stanković A, Ivanović-Šašić A, Milutinović-Nikolić A, Jovanović D (2012) Oxidation of hydroxide ions at platinum-modified zeolite electrode. Hem Ind 66:759–767. https://doi.org/10.2298/HEMIND111223027M

    Article  CAS  Google Scholar 

  91. Daniele S, Baldo MA, Bragato C, Abdelsalam ME, Denuault G (2002) Steady-state voltammetry of hydroxide ion oxidation in aqueous solutions containing ammonia. Anal Chem 74:3290–3296. https://doi.org/10.1021/ac025530n

    Article  CAS  PubMed  Google Scholar 

  92. González J, Laborda E, Molina Á (2023) Voltammetric kinetic studies of electrode reactions: guidelines for detailed understanding of their fundamentals. J Chem Educ 100:697–706. https://doi.org/10.1021/acs.jchemed.2c00944

    Article  CAS  PubMed  Google Scholar 

  93. Daniele S, Baldo MA, Bragato C, Denuault G, Abdelsalam ME (1999) Steady-state voltammetry for hydroxide ion oxidation in aqueous solutions in the absence of and with varying concentrations of supporting electrolyte. Anal Chem 71:811–818. https://doi.org/10.1021/ac9807619

    Article  CAS  Google Scholar 

  94. Abu-Rabi A, Jašin D, Mentus S (2007) The influence of cathodic pretreatment on the kinetics of hydroxide ion oxidation on polycrystalline gold electrode. J Electroanal Chem 600:364–368. https://doi.org/10.1016/j.jelechem.2006.09.009

    Article  CAS  Google Scholar 

  95. Wiberg GKH, Arenz M (2015) On the influence of hydronium and hydroxide ion diffusion on the hydrogen and oxygen evolution reactions in aqueous media. Electrochim Acta 159:66–70. https://doi.org/10.1016/j.electacta.2015.01.098

    Article  CAS  Google Scholar 

  96. Breiter M, Hoffmann K (1960) Bestimmung der diffusions koeffizienten DHs, D, und DOH-mit der platinscheibenelektrode. Z Elektrochem 64:462

    CAS  Google Scholar 

  97. Atkins P, Paula JD (2002) Physical chemistry, 7th edn. WH Freeman and Company, New York, USA

    Google Scholar 

  98. Littauer EL, Tsai KC (1979) Observations of the diffusion coefficient of the hydroxyl ion in lithium hydroxide solutions. Electrochim Acta 24:351–355. https://doi.org/10.1016/0013-4686(79)87018-8

    Article  CAS  Google Scholar 

  99. Lopez de Mishima BA, Lescano DT, Molina Holgado HT (1998) Electrochemical oxidation of ammonia in alkaline solutions: its application to an amperometric sensor. Electrochim Acta 43:395–404. https://doi.org/10.1016/S0013-4686(97)00061-3

    Article  CAS  Google Scholar 

  100. Donten M, Hyk W, Wojciech H, Ciszkowska M, Stojek Z (1997) Electrooxidation of ammonia and simple amines at titanium electrodes modified with a mixture of ruthenium and titanium dioxides. Electroanalysis 9:751–754. https://doi.org/10.1002/elan.1140091004

    Article  CAS  Google Scholar 

  101. Donten M, Osteryoung J (1991) Electrochemical and chemical reactions in baths for plating amorphous alloys. J Appl Electrochem 21:496–503. https://doi.org/10.1007/BF01018601

    Article  CAS  Google Scholar 

  102. International critical tables of numerical data, physics, chemistry, and technology (1930) National Research Council of the United States of America, Washington DC, USA. https://doi.org/10.17226/20230

  103. Martell AE, Smith RM (1981) Critical stability constants. Plenum Press, New York

    Google Scholar 

  104. Eigen M, Schoen J (1955) Potential-impulse method for the investigation of very rapid ionic reactions in aqueous solution. J Z Elektrochem 59:483–494

    CAS  Google Scholar 

  105. Gulaboski RMV (2023) Calculating of square-wave voltammograms-a practical on-line simulation platform. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05520-y

    Article  Google Scholar 

  106. Bieniasz LK (2023) While educating electrochemists, do not forget we live in a computer era. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05457-2

    Article  Google Scholar 

  107. Wang X, Wang Z (2022) Animated electrochemistry simulation modules. J Chem Educ 99:752–758. https://doi.org/10.1021/acs.jchemed.1c00944

    Article  CAS  Google Scholar 

  108. Wang S, Wang J, Gao Y (2017) Development and use of an open-source, user-friendly package to simulate voltammetry experiments. J Chem Educ 94:1567–1570. https://doi.org/10.1021/acs.jchemed.6b00986

    Article  CAS  Google Scholar 

  109. Khalafi L, Cunningham AM, Hoober-Burkhardt LE, Rafiee M (2021) Why is voltammetric current scan rate dependent? Representation of a mathematically dense concept using conceptual thinking. J Chem Educ 98:3957–3961. https://doi.org/10.1021/acs.jchemed.1c00770

    Article  CAS  Google Scholar 

  110. Bond AM, Zhang J, Gundry L, Kennedy GF (2022) Opportunities and challenges in applying machine learning to voltammetric mechanistic studies. Curr Opin Electrochem 34:101009. https://doi.org/10.1016/j.coelec.2022.101009

  111. Jaworski A, Osteryoung JG, Donten M, Stojek Z (1999) The strength of acids in alcohols as determined by steady-state voltammetry. Anal Chem 71:3853–3861. https://doi.org/10.1021/ac9814593

    Article  CAS  PubMed  Google Scholar 

  112. de Souza FC, da Rocha JC, Vieira E et al (2009) Development of an analytical methodology for quantification of strong acid in diesel oil. Electroanalysis 21:2277–2280. https://doi.org/10.1002/elan.200900143

    Article  CAS  Google Scholar 

  113. Baldo MA, Oliveri P, Simonetti R, Daniele S (2016) A novel electroanalytical approach based on the use of a room temperature ionic liquid for the determination of olive oil acidity. Talanta 161:881–887. https://doi.org/10.1016/j.talanta.2016.09.045

    Article  CAS  PubMed  Google Scholar 

  114. Silvester DS, He W, Aldous L et al (2008) Electrochemical reduction of benzoic acid and substituted benzoic acids in some room temperature ionic liquids. J Phys Chem C 112:12966–12973. https://doi.org/10.1021/jp802996q

    Article  CAS  Google Scholar 

  115. He W, Silvester DS, Streeter I et al (2009) Measuring the solubility of benzoic acid in room temperature ionic liquids using chronoamperometric techniques. J Phys Org Chem 22:69–76. https://doi.org/10.1002/poc.1428

    Article  CAS  Google Scholar 

  116. Meng Y, Norman S, Hardacre C, Compton RG (2013) The electroreduction of benzoic acid: voltammetric observation of adsorbed hydrogen at a platinum microelectrode in room temperature ionic liquids. Phys Chem Chem Phys 15:2031–2036. https://doi.org/10.1039/C2CP43580B

    Article  CAS  PubMed  Google Scholar 

  117. Ledezma-Yanez I, Díaz-Morales O, Figueiredo MC, Koper MTM (2015) Hydrogen oxidation and hydrogen evolution on a platinum electrode in acetonitrile. ChemElectroChem 2:1612–1622. https://doi.org/10.1002/celc.201500341

    Article  CAS  Google Scholar 

  118. Bentley CL, Bond AM, Hollenkamp AF et al (2015) Electrochemical proton reduction and equilibrium acidity (pKa) in aprotic ionic liquids: protonated amines and sulfonamide acids. J Phys Chem C 119:21828–21839. https://doi.org/10.1021/acs.jpcc.5b05723

    Article  CAS  Google Scholar 

  119. Bentley CL, Bond AM, Hollenkamp AF et al (2015) Electrochemical proton reduction and equilibrium acidity (pKa) in aprotic ionic liquids: phenols, carboxylic acids, and sulfonic acids. J Phys Chem C 119:21840–21851. https://doi.org/10.1021/acs.jpcc.5b05724

    Article  CAS  Google Scholar 

  120. Bentley CL, Bond AM, Zhang J (2018) Voltammetric perspectives on the acidity scale and H+/H2 process in ionic liquid media. Annu Rev Anal Chem 11:397–419. https://doi.org/10.1146/annurev-anchem-061417-010022

    Article  CAS  Google Scholar 

  121. Daniele S, Ugo P, Mazzocchin G-A, Bontempelli G (1985) Acid-base equilibria in organic solvents: part 1. Evaluation of solvent basicity by cyclic voltammetry. Anal Chim Acta 173:141–148. https://doi.org/10.1016/S0003-2670(00)84951-X

    Article  CAS  Google Scholar 

  122. Kurek SS, Laskowska BJ, Stokłosa A (2006) Cathodic reduction of acids in dimethylformamide on platinum. Electrochim Acta 51:2306–2314. https://doi.org/10.1016/j.electacta.2005.04.085

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Daniele.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldo, M.A., Fabris, S., Stortini, A.M. et al. Protolysis studies and quantification of acids and bases in aqueous solutions by microelectrode voltammetry. J Solid State Electrochem 28, 1049–1068 (2024). https://doi.org/10.1007/s10008-023-05675-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05675-8

Keywords

Navigation