Skip to main content
Log in

Numerical modeling of space-time wave extremes using WAVEWATCH III

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A novel implementation of parameters estimating the space-time wave extremes within the spectral wave model WAVEWATCH III (WW3) is presented. The new output parameters, available in WW3 version 5.16, rely on the theoretical model of Fedele (J Phys Oceanogr 42(9):1601-1615, 2012) extended by Benetazzo et al. (J Phys Oceanogr 45(9):2261–2275, 2015) to estimate the maximum second-order nonlinear crest height over a given space-time region. In order to assess the wave height associated to the maximum crest height and the maximum wave height (generally different in a broad-band stormy sea state), the linear quasi-determinism theory of Boccotti (2000) is considered. The new WW3 implementation is tested by simulating sea states and space-time extremes over the Mediterranean Sea (forced by the wind fields produced by the COSMO-ME atmospheric model). Model simulations are compared to space-time wave maxima observed on March 10th, 2014, in the northern Adriatic Sea (Italy), by a stereo camera system installed on-board the “Acqua Alta” oceanographic tower. Results show that modeled space-time extremes are in general agreement with observations. Differences are mostly ascribed to the accuracy of the wind forcing and, to a lesser extent, to the approximations introduced in the space-time extremes parameterizations. Model estimates are expected to be even more accurate over areas larger than the mean wavelength (for instance, the model grid size).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://polar.ncep.noaa.gov/waves/wavewatch.shtml

References

  • Adler RJ (1981) The geometry of random fields. Wiley, Chichester

    Google Scholar 

  • Adler RJ, Taylor JE (2007) Random fields and geometry, vol 115. Springer, New York

  • Ardhuin F, Rogers E, Babanin AV, Filipot JF, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre JM, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40(9):1917–1941. doi:http://dx.doi.org/10.1175/2010JPO4324.1. 0907.4240

  • Barbariol F, Benetazzo A, Bergamasco F, Carniel S, Sclavo M (2014) Stochastic space-time extremes of wind sea states: validation and modeling. In: ASME (ed) Proceedings of the 33th ASME international conference on offshore mechanics and arctic engineering (OMAE), san francisco (USA)

  • Barbariol F, Benetazzo A, Carniel S, Sclavo M (2015) Space-time wave extremes: The role of metocean forcings. J Phys Oceanogr 45(7):1897–1916. doi:10.1175/JPO-D-14-0232.1

    Article  Google Scholar 

  • Battjes J, Janssen J (1978) Energy loss and set-up due to breaking of random waves. Proceedings of the 16th international conference on coastal engineering 1(1):569–587. doi:10.9753/icce.v16.. http://journals.tdl.org/icce/index.php/icce/article/view/3294

    Google Scholar 

  • Baxevani A, Rychlik I (2006) Maxima for Gaussian seas. Ocean Eng 33:895–911

    Article  Google Scholar 

  • Benetazzo A, Fedele F, Gallego G, Shih PC, Yezzi A (2012) Offshore stereo measurements of gravity waves. Coast Eng 64:127–138

    Article  Google Scholar 

  • Benetazzo A, Barbariol F, Bergamasco F, Torsello A, Carniel S, Sclavo M (2015) Observation of extreme sea waves in a space-time ensemble. J Phys Oceanogr 45(9):2261–2275. doi:10.1175/JPO-D-15-0017.1

    Article  Google Scholar 

  • Bertotti L, Cavaleri L, Loffredo L, Torrisi L (2013) Nettuno: analysis of a wind and wave forecast system for the mediterranean sea. Mon Weather Rev 141(9):3130–3141. doi:10.1175/MWR-D-12-00361.1

    Article  Google Scholar 

  • Boccotti P (2000) Wave mechanics for ocean engineering, vol 64. Elsevier Science

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions. I: model description and validation. J Geophys Res 104(C4):7649–7666

    Article  Google Scholar 

  • Cavaleri L, Bertotti L (2004). Accuracy of the modelled wind and wave fields in 56A:167–175

    Google Scholar 

  • Cavaleri L, Barbariol F, Benetazzo A, Bertotti L, Bidlot J-R, Janssen P, Wedi N (2016a) The Draupner wave: a fresh look and the emerging view. J Geophys Res - Oceans 121:6061–6075

  • Cavaleri L., Benetazzo A., Barbariol F., Bidlot J., Janssen P. (2016b) The Draupner event: the large wave and the emerging view. Bull Amer Meteor Soc:1. doi:10.1175/BAMS-D-15-00300

  • Didenkulova II, Slunyaev AV, Pelinovsky EN, Kharif C (2006) Freak waves in 2005. Nat Hazards Earth Syst Sci 6(6):1007–1015. doi:10.5194/nhess-6-1007-2006

    Article  Google Scholar 

  • Dysthe K, Krogstad HE, Mu̇ller P (2008) Oceanic rogue waves. Annu Rev Fluid Mech 40:287–310

    Article  Google Scholar 

  • Fedele F (2012) Space–time extremes in short-crested storm seas. J Phys Oceanogr 42(9):1601–1615

    Article  Google Scholar 

  • Fedele F (2015) On oceanic rogue waves. arXiv:1501.03370v5

  • Fedele F, Tayfun MA (2009) On nonlinear wave groups and crest statistics. J Fluid Mech 620:221–239

    Article  Google Scholar 

  • Fedele F, Benetazzo A, Gallego G, Shih PC, Yezzi A, Barbariol F, Ardhuin F (2013) Space-time measurements of oceanic sea states. Ocean Model 70:103–115

    Article  Google Scholar 

  • Forristall G (2007) Wave crest heights and deck damage in hurricanes Ivan, Katrina and Rita. In: Offshore Technology Conference. Offshore Technology Conference, Houston, TX, USA

  • Forristall GZ (2006) Maximum wave heights over an area and the air gap problem. In: Proceedings of ASME 25th Inter. Conf. Off. Mech. Arc. Eng. OMAE2006-92022. ASME, Hamburg, Germany, pp 11–15

  • Gemmrich J, Garrett C (2008) Unexpected waves. J Phys Oceanogr 38(10):2330–2336

    Article  Google Scholar 

  • Gumbel EJ (1958) Statistics of extremes. Columbia University press, New York

    Google Scholar 

  • Hashimoto N, Nagai T, Asai T (1994) Extension of the maximum entropy principle method for directional wave spectrum estimation. In: Proceedings of the 24th int. Conf. on coastal engineering, vol 1. ASCE, Kobe (Japan), pp 232–246

  • Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman, P, et al. (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)

    Google Scholar 

  • Hasselmann S, Hasselmann K, Allender JH, Barnett TP (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: parameterizations of the nonlinear energy transfer for application in wave models. J Phys Oceanogr 15(11):1378–1391

    Article  Google Scholar 

  • Janssen PAEM (2003) Nonlinear four-wave interactions and freak waves. J Phys Oceanogr 33(4):863–884

    Article  Google Scholar 

  • Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech, B/Fluids 22(6):603–634. doi:10.1016/j.euromechflu.2003.09.002

    Article  Google Scholar 

  • Krogstad HE, Liu J, Socquet-Juglard H, Dysthe KB, Trulsen K (2004) Spatial extreme value analysis of nonlinear simulations of random surface waves. In: Proceedings of the ASME 2004 23rd International Conference on Ocean. Offshore and Arctic Engineering, ASME, Vancouver, BC, Canada

  • Kuik A, Van Vledder GP, Holthuijsen LH (1988) A method for the routine analysis of pitch-and-roll buoy wave data. J Phys Oceanogr 18:1020–1034

  • Mardia KV, Jupp PE (2009) Directional statistics. Wiley Series in Probability and Statistics, Wiley. https://books.google.it/books?id=PTNiCm4Q-M0C

  • Onorato M, Osborne AR, Serio M, Bertone S (2001) Freak waves in random oceanic sea states. Phys Rev Lett 86(25):5831

    Article  Google Scholar 

  • Piterbarg VI (1996) Asymptotic methods in the theory of gaussian processes and fields. AMS Transl. Math Monographs 148:206

    Google Scholar 

  • Sclavo M, Barbariol F, Bergamasco F, Carniel S, Benetazzo A (2015) Italian seas wave extremes: a preliminary assessment. Rendiconti Lincei 26(1):25–35. doi:10.1007/s12210-015-0380-y

    Article  Google Scholar 

  • Signell RP, Carniel S, Cavaleri L, Chiggiato J, Doyle JD, Pullen J, Sclavo M (2005) Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J Mar Syst 53(1):217–233

    Article  Google Scholar 

  • Socquet-Juglard H, Dysthe K, Trulsen K, Krogstad HE, Liu J (2005) Probability distributions of surface gravity waves during spectral changes. J Fluid Mech 542(1):195–216

    Article  Google Scholar 

  • Steppeler J, Doms G, Schȧttler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model {LM}. Meteorog Atmos Phys 82(1):75– 96

    Article  Google Scholar 

  • Tayfun MA (1980) Narrow-Band Nonlinear sea waves. J Geophys Res 85(C3):1548–1552

    Article  Google Scholar 

  • Tayfun MA (2006) Statistics of nonlinear wave crests and groups. Ocean Eng 33:1589–1622. doi:10.1016/j.oceaneng.2005.10.007

    Article  Google Scholar 

  • Tayfun MA, Fedele F (2007) Wave-height distributions and nonlinear effects. Ocean Eng 34:1631–1649

    Article  Google Scholar 

  • The WAVEWATCH III® Development Group WW3DG (2016). User manual and system documentation of WAVEWATCH III® version 5.16. Tech. Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 326 pp. + Appendices

  • Tolman HL (1991) A Third-Generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J Phys Oceanogr 21(6):782–797

    Article  Google Scholar 

Download references

Acknowledgments

The research was partially supported by NCEP/ NOAA, and partially by the Flagship Project RITMARE-The Italian Research for the Sea, coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University and Research within the National Research Program 2011-2015. Part of the research was done during the visit of Francesco Barbariol to NCEP/NOAA, supported by the 2015 Short-Term Mobility Program of the Italian National Research Council (CNR). Authors gratefully acknowledge prof. Francesco Fedele (GATECH, USA) for discussions, and CNMCA (Italy) for providing the wind model data. The WASS software is available at www.dais.unive.it/wass/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Barbariol.

Additional information

Responsible Editor: Oyvind Breivik

This article is part of the Topical Collection on the 14th International Workshop on Wave Hindcasting and Forecasting in Key West, Florida, USA, November 8-13, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbariol, F., Alves, JH.G.M., Benetazzo, A. et al. Numerical modeling of space-time wave extremes using WAVEWATCH III. Ocean Dynamics 67, 535–549 (2017). https://doi.org/10.1007/s10236-016-1025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-1025-0

Keywords

Navigation