Skip to main content
Log in

Welfare and bank risk-taking

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

Our study investigates a model of general equilibrium banking that incorporates moral hazard and incentive mechanisms for bank risk-taking, with a particular focus on deposit market competition. Our findings reveal that when banks compete perfectly in the deposit market, it leads to maximal welfare and an optimal level of bank failure risk. This outcome remains valid even if the risk of failure for competitive banks is higher than that of banks with monopoly rents, and it is not affected by social costs associated with bank failures. Our model suggests that there is no trade-off between bank competition and financial stability. Our results support the empirical findings of Carlson, Correia, and Luck (J Polit Econ 130(2): 462–520, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For an overview of this debate, see Boyd and De Nicolò (2005), Tarullo (2011), Vives (2019) and Carlson, Correia and Luck (2022).

  2. Most partial equilibrium models assume the existence of deposit insurance either for the sake of realism, or under the implicit assumption that deposit insurance corrects some not explicitly modeled coordination failures, such as the occurrence of runs.

  3. The assumption of constant returns to scale in monitoring is fairly standard in the banking literature (see e.g. Dell’Ariccia and Marquez 2006).

References

  • Boyd, J.H., De Nicolò, G.: The theory of bank risk taking and competition revisited. J. Finance 60(3), 1329–1343 (2005)

    Article  Google Scholar 

  • Boyd, J.H., De Nicolò, G., Smith, B.D.: Crises in competitive versus monopolistic banking systems. J. Money, Credit, Bank. 36(3), 487–506 (2004)

    Article  Google Scholar 

  • Carlson, M., Correia, S., Luck, S.: The effects of banking competition on growth and financial stability: Evidence from the national banking era. J. Polit. Econ. 130(2), 462–520 (2022)

    Article  Google Scholar 

  • Dell’Ariccia, G., Marquez, R.: Competition among regulators and credit market integration. J. Financial Econ. 79, 401–430 (2006)

    Article  Google Scholar 

  • Dick, A.A.: Demand estimation and consumer welfare in the banking industry. J. Bank. Finance 32(8), 1661–1676 (2008)

    Article  Google Scholar 

  • Hellmann, T., Murdock, K., Stiglitz, J.: Liberalization, moral hazard in banking, and prudential regulation: Are capital requirements enough? Am. Econ. Rev. 90(1), 147–165 (2000)

    Article  Google Scholar 

  • Holmstrom, B., Tirole, J.: Financial intermediation, loanable funds, and the real sector. Quart. J. Econ. CXII 3, 663–691 (1997)

    Article  Google Scholar 

  • Jermann, U., Xiang, H.: Dynamic banking with non-maturing deposits. J. Econ. Theory 105644 (2023).

  • Keeley, M.: Deposit insurance, risk and market power in banking. Am. Econ. Rev. 80, 1183–1200 (1990)

    Google Scholar 

  • Martinez-Miera, D., Repullo, R.: Does competition reduce the risk of bank failure? Rev. Financial Stud. 23(10), 3638–3664 (2010)

    Article  Google Scholar 

  • Matutes, C., Vives, X.: Competition for Deposits, Fragility, and Insurance. J. Financial Intermed. 5, 186–216 (1996)

    Article  Google Scholar 

  • Morrison, A.D., White, L.: Crises and capital requirements in banking. Am. Econ. Rev. 95(5), 1548–1572 (2005)

    Article  Google Scholar 

  • Park, K., Pennacchi, G.: Harming depositors and helping borrowers: The disparate impact of bank consolidation. Rev. Financ. Stud. 22(1), 1–40 (2009)

    Article  Google Scholar 

  • Repullo, R.: Capital requirements, market power, and risk-taking in banking. J. Financ. Intermed. 13, 156–182 (2004)

    Article  Google Scholar 

  • Tarullo, D.K.: Industrial Organization and Systemic Risk: An Agenda for Further Research, speech delivered at the Conference on Regulating Systemic Risk, Washington D.C., September (2011).

  • Tito, C., Levi-Yeyati,: Financial opening, deposit insurance, and risk in a model of banking competition. Eur. Econ. Rev. 46, 693–733 (2002)

    Google Scholar 

  • Vives, X.: Competition and stability in modern banking: A post-crisis perspective. Int. J. Ind. Organ. 64, 55–69 (2019)

    Article  Google Scholar 

  • Xu, M. T., Hu, K., Das, M. U. S.: Bank profitability and financial stability. Int. Monet. Fund (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Lucchetta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 3

The risk of failure of the monopolistic bank declines monotonically with deposit insurance coverage.

Proof

Differentiating Eq. (14) with respect to \(g\) we get:

$$ \frac{{dR_{M}^{*} }}{dg} = \frac{1}{2}\left( {1 - \frac{1}{2}\left( {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} \right)^{ - 1/2} \left( {2g - 2X + 4\alpha^{ - 1} } \right)} \right) $$

Therefore, \( sign\left\{ {\frac{{dR_{M}^{*} }}{{dg}}} \right\} = sign\left\{ 1 - \frac{1}{2}\left( {X^{2} - 4\alpha ^{{ - 1}} \rho + g\left( {g - 2X + 4\alpha ^{{ - 1}} } \right)} \right)^{{ - 1/2}} \right.\break\left. \left( {2g - 2X + 4\alpha ^{{ - 1}} } \right) \right\}. \)

\(\frac{{dR_{M}^{*} }}{dg} < 0\) is equivalent to the following inequalities:

$$ \begin{aligned} 1 < & \frac{1}{2}\left( {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} \right)^{ - 1/2} \left( {2g - 2X + 4\alpha^{ - 1} } \right) \\ & \Leftrightarrow 2\left( {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} \right)^{1/2} < 2g - 2X + 4\alpha^{ - 1} \\ & \Leftrightarrow 4\left( {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} \right) < \left( {2\left( {g - X} \right) + 4\alpha^{ - 1} } \right)^{2} \\ & \Leftrightarrow 4X^{2} - 16\alpha^{ - 1} \rho + 4g\left( {g - 2X + 4\alpha^{ - 1} } \right) < 4\left( {g - X} \right)^{2} + 16\alpha^{ - 2} + 16\left( {g - X} \right)\alpha^{ - 1} \\ & \Leftrightarrow 4X^{2} - 16\alpha^{ - 1} \rho + 4g^{2} - 8gX + 16g\alpha^{ - 1} < 4g^{2} + 4X^{2} - 8gX + 16\alpha^{ - 2} + 16\alpha^{ - 1} g - 16X\alpha^{ - 1} \\ & \Leftrightarrow - 16\alpha^{ - 1} \rho < 16\alpha^{ - 2} - 16X\alpha^{ - 1} \Leftrightarrow \\ & - \rho < \alpha^{ - 1} - X \\ \end{aligned} $$

By (A1), \(\alpha^{ - 1} - X \ge 0\). Therefore, \(\frac{{dR_{M}^{*} }}{dg} < 0\), which implies \(\frac{{dP_{M}^{*} }}{dg} > 0\) by Eq. (15). \(\hfill\square \)

Lemma 4

For all \(g \in [0,1]\), \(\frac{\partial Z}{{\partial \sigma }} > 0\).

Proof

$$ \begin{aligned} \frac{\partial Z}{{\partial \sigma }} = & \frac{2A}{{(.)^{2} }}\left( {\frac{\partial r}{{\partial \sigma }}\rho \left[ {2r\left( {\sigma ,g} \right)\left( {\rho + g} \right) + \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} \left( {1 - \sigma } \right)} \right)\rho } \right] - r\left( {\sigma ,g} \right)\rho \left[ {2\frac{\partial r}{{\partial \sigma }}\left( {\rho + g} \right) + \rho \left( {\pi_{C}^{{}} - \pi_{M}^{{}} } \right)} \right]} \right) \\ & \Leftrightarrow \frac{2A\rho }{{(.)^{2} }}\left( {\frac{\partial r}{{\partial \sigma }}\left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} \left( {1 - \sigma } \right)} \right) - r\left( {\sigma ,g} \right)\rho \left( {\pi_{C}^{{}} - \pi_{M}^{{}} } \right)} \right) \\ \end{aligned} $$

The term \(\frac{\partial r}{{\partial \sigma }}\left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} \left( {1 - \sigma } \right)} \right) - r\left( {\sigma ,g} \right)\rho \left( {\pi_{C}^{{}} - \pi_{M}^{{}} } \right)\) is strictly positive for all \(g \in \left[ {0,1} \right]\), since \(\frac{\partial r}{{\partial \sigma }} = P_{C} R_{C} - \rho + g\left( {P_{M} - P_{C} } \right) > 0\) and \(\pi_{C}^{{}} < \pi_{M}^{{}}\). Thus, \(\frac{\partial Z}{{\partial \sigma }} > 0\). \(\hfill\square \)

Proposition 1

For all \(g \in \left[ {0,1} \right]\), \(\frac{\partial Y}{{\partial \sigma }} > 0\): perfect competition (\(\sigma = 1\)) maximizes welfare.

Proof

Using the bank profit functions in the two sectors, we can write:

$$ P_{C} X - \frac{1}{2\alpha }P_{C}^{2} = \pi^{C} + P_{C} R_{C} $$
(a)
$$ P_{M}^{{}} X - \frac{1}{2\alpha }P_{M}^{2} = \pi^{M} + \rho $$
(b)

Hence, expected output net of monitoring and production costs in the two sectors are:

$$ P_{C} X - \frac{1}{2\alpha }P_{C}^{2} - \frac{1}{2}\pi_{C} = P_{C} R_{C} + \frac{1}{2}\pi_{C} $$
(c)
$$ P_{M}^{{}} X - \frac{1}{2\alpha }P_{M}^{2} - \frac{1}{2}\pi_{M} = \pi^{M} + \rho - \frac{1}{2}\pi_{M} = \rho + \frac{1}{2}\pi_{M} $$
(d)

Substituting (c) and (d) in (32), and using (30), we can write:

$$ \begin{aligned} Y(\sigma ,g) &\equiv \left[ {\left( {P_{C} X - \frac{1}{2\alpha }P_{C}^{2} - \frac{1}{2}\pi_{C} } \right)\sigma + \left( {P_{M}^{{}} X - \frac{1}{2\alpha }P_{M}^{2} - \frac{1}{2}\pi_{M} } \right)\left( {1 - \sigma } \right) + g} \right]Z\left( {\sigma ,g} \right) \\ &= \frac{{\left[ {2\left( {P_{C} R_{C} \sigma + \left( {1 - \sigma } \right)\rho } \right) + \pi_{C} \sigma + \pi_{M} \left( {1 - \sigma } \right) + g} \right]r\left( {\sigma ,g} \right)\rho }}{{2r\left( {\sigma ,g} \right)\left( {\rho + g} \right) + \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} \left( {1 - \sigma } \right)} \right)\rho }}A \\ \end{aligned} $$

Let \(g = 0\). Then

$$ Y(\sigma ,0) = \frac{{\left[ {2\left( {P_{C} R_{C} \sigma + \left( {1 - \sigma } \right)\rho } \right) + \pi_{C} \sigma + \pi_{M} \left( {1 - \sigma } \right)} \right]r\left( {\sigma ,0} \right)}}{{2r\left( {\sigma ,0} \right) + \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} \left( {1 - \sigma } \right)} \right)}}A $$

Since \(r(\sigma ,0) = \sigma P_{C} R_{C} + (1 - \sigma )\rho\), \(Y(\sigma ,0)\) can be written as:

$$ Y(\sigma ,0) = \frac{{\left[ {2\left( {\sigma P_{C} R_{C} + (1 - \sigma )\rho } \right) + \pi_{C} \sigma + \pi_{M} )(1 - \sigma )} \right]r\left( {\sigma ,0} \right)}}{{2\left( {\sigma P_{C} R_{C} + (1 - \sigma )\rho } \right) + \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} (1 - \sigma )} \right)}}A = r(\sigma ,0)A $$

Thus, \(\frac{\partial Y}{{\partial \sigma }} = \frac{\partial r}{{\partial \sigma }}\left( {\sigma ,0} \right)A = \left( {P_{C} R_{C} - \rho } \right)A > 0\), since \(P_{C} R_{C} > \rho\).

Let \(g \in (0,1]\) and re-write:

$$ Y(\sigma ,g) = h(\sigma )f(\sigma )A, $$

where

$$ f(\sigma ) \equiv \frac{r(\sigma ,g)\rho }{{2r(\sigma ,g)(\rho + g) + \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} \left( {1 - \sigma } \right)} \right)\rho }} $$
$$ h(\sigma ) \equiv 2\left( {P_{C} R_{C} \sigma + (1 - \sigma )\rho } \right) + \pi_{C} \sigma + \pi_{M} (1 - \sigma ) + g $$

Next, we show that both functions \(f(\sigma )\) and \(h(\sigma )\) are monotonically increasing in \(\sigma .\)

Consider

$$ \begin{aligned} f^{\prime}(\sigma ) & = \frac{1}{{\left( {2r(\sigma ,g)(\rho + g) + \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} (1 - \sigma )} \right)\rho } \right)^{2} }}x \\ & \quad \frac{\partial r}{{\partial \sigma }}\rho \left( {2r(\sigma ,g)(\rho + g) + \frac{\partial r}{{\partial \sigma }}\rho \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} (1 - \sigma )} \right)\rho } \right) \\ &\quad - r(\sigma ,g)\rho 2r^{\prime}(\sigma ,g)(\rho + g) - r(\sigma ,g)\rho \left( {\pi_{C}^{{}} - \pi_{M}^{{}} } \right)\rho \\ & = \frac{{\left( {\frac{\partial r}{{\partial \sigma }}\rho \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} (1 - \sigma )} \right)\rho } \right) - r(\sigma ,g)\rho \left( {\pi_{C}^{{}} - \pi_{M}^{{}} } \right)\rho }}{{\left( {2r(\sigma ,g)(\rho + g) + \left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} (1 - \sigma )} \right)\rho } \right)^{2} }} \\ \end{aligned} $$

By Lemma 3, \(\frac{\partial r}{{\partial \sigma }}\rho \left( {\left( {\pi_{C}^{{}} \sigma + \pi_{M}^{{}} (1 - \sigma )} \right)\rho ) - r(\sigma ,g)\rho \left( {\pi_{C}^{{}} - \pi_{M}^{{}} } \right)\rho } \right) > 0\), hence \(f^{\prime}(\sigma ) > 0\).

Now consider:

$$ h^{\prime}(\sigma ) \equiv 2\left( {P_{C} R_{C} - \rho } \right) + \pi_{C} - \pi_{M} $$

Using equilibrium values, this derivative can be written as:

$$ \begin{aligned} h^{\prime}(\sigma ) &= 2\left( {P_{C} R_{C} - \rho } \right) + \pi_{C} - \pi_{M} \\ &= 2\alpha \left( {\frac{X - g}{2}} \right)\frac{X + g}{2} + \left( {\alpha \frac{{\left( {X - g} \right)^{2} }}{8} - \alpha \frac{{\left( {X - g + \sqrt {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} } \right)^{2} }}{8}} \right) \\ \end{aligned} $$

Therefore:

$$ \begin{array}{*{20}l} {h^{\prime}(\sigma ) \Leftrightarrow 2\alpha \left( {\frac{X - g}{2}} \right)\frac{X + g}{2}} \hfill \\ \quad { > \alpha \left( {\frac{{X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 2\left( {X - g} \right)\sqrt {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} }}{8}} \right) + 2\rho } \hfill \\ \end{array} \left( * \right) $$

By (A1):

$$ \begin{aligned} & \sqrt {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} < X + g \hfill \\ &\quad \Leftrightarrow X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) < \left( {X + g} \right)^{2} \hfill \\ \end{aligned} $$

Therefore:

$$ \begin{aligned} & \alpha \frac{{X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 2(X - g)\sqrt {X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right)} }}{8} \hfill \\ &\quad < \frac{{X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 2(X - g)(X + g)}}{8} \hfill \\ \end{aligned} $$

Hence, inequality (*) is satisfied if:

$$ 2\alpha \left( {\frac{X - g}{2}} \right)\frac{X + g}{2} > \left( {\frac{{X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 2\left( {X - g} \right)\left( {X + g} \right)}}{8}} \right) + 2\rho \;\;\;\;\left( {**} \right) $$

Note that if (**) holds, we can write it as:

$$ \begin{aligned} 2\alpha \left( {\frac{X - g}{2}} \right)\frac{X + g}{2} & > \left. {\frac{{X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 2(X - g)(X + g)}}{8}} \right) \\ & \Leftrightarrow 4\left( {X^{2} - g^{2} } \right) > X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 2\left( {X^{2} - g^{2} } \right) + 16\rho \\ & \Leftrightarrow 2X^{2} - 2g^{2} > X^{2} - 4\alpha^{ - 1} \rho + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 16\rho \\ & \Leftrightarrow X^{2} > - 4\alpha^{ - 1} \rho + 2g^{2} + g\left( {g - 2X + 4\alpha^{ - 1} } \right) + 16\rho \\ & \Leftrightarrow X^{2} + 4\alpha^{ - 1} (\rho - g) + g\left( {2X - g} \right) > 2g^{2} + 16\rho \\ &\quad X^{2} + 4\alpha^{ - 1} (\rho - g) + g2X > 3g^{2} + 16\rho \\ \end{aligned} $$

By (A4) and (A1), \(g2X > 3g^{2}\), since \(X > 4\rho > \frac{3}{2}g\), and by (A3)\(X^{2} > 16\rho\), which implies that inequality (**) holds, since \(X^{2} + 4\alpha^{ - 1} (\rho - g) + g2X > 3g^{2} + 16\rho\). Hence, \(h^{\prime}(\sigma ) > 0.\)

In conclusion, \(Y(\sigma ,g) = h(\sigma )f(\sigma )A\) is strictly increasing in \(\sigma\) since both component functions are increasing in \(\sigma .\) \(\hfill\square \)

Proposition 2

For any admissible social cost function that is increasing and convex in investment (deposits), for all \(g \in [0,1]\), \(\frac{\partial W}{{\partial \sigma }} > 0\): perfect competition (\(\sigma = 1\)) maximizes welfare.

Proof

The welfare function (35) can be written as:

$$ \begin{aligned} W(\sigma ,g) = & Z(\sigma ,g)\left[ {\left( {P_{C} R_{C} \sigma + \rho (1 - \sigma )} \right) + \frac{1}{2}\pi_{C} \sigma + \frac{1}{2}\pi_{M} (1 - \sigma ) + g} \right] + \\ & - C\left[ {(1 - P_{M} )(1 - \sigma )^{\gamma } + (1 - P_{C} )\sigma^{\gamma } } \right]Z(\sigma ,g)^{\gamma } \\ \end{aligned} $$

The upper bound defined by inequality (36) for all \(\sigma \in [0,1]\) and \(g \in [0,1]\) implies:

$$ \begin{aligned} W(\sigma ,g) = & Z(\sigma ,g)\left[ {\left( {P_{C} R_{C} \sigma + \rho (1 - \sigma )} \right) + \frac{1}{2}\pi_{C} \sigma + \frac{1}{2}\pi_{M} (1 - \sigma ) + g} \right] + \\ & - C\left[ {(1 - P_{M} )(1 - \sigma )^{\gamma } + (1 - P_{C} )\sigma^{\gamma } } \right]Z(\sigma ,g)^{\gamma } \ge \rho A \Rightarrow \\ & C \le \frac{{Z(\sigma ,g)\left[ {\left( {P_{C} R_{C} \sigma + \rho (1 - \sigma )} \right) + \frac{1}{2}\pi_{C} \sigma + \frac{1}{2}\pi_{M} (1 - \sigma ) + g} \right] - \rho A}}{{\left[ {(1 - P_{M} )(1 - \sigma )^{\gamma } + (1 - P_{C} )\sigma^{\gamma } } \right]Z(\sigma ,g)^{\gamma } }} \\ & \equiv \overline{C}(\sigma ,g) \\ \end{aligned} $$

Function \(\overline{C}(\sigma ,g)\) is the highest level of social costs consistent with the existence of essential intermediation. Thus, a lower bound to any welfare function can be defined as:

$$ \begin{aligned} \underline {W} (\sigma ,g) = & Z(\sigma ,g)\left[ {\left( {P_{C} R_{C} \sigma + \rho (1 - \sigma )} \right) + \frac{1}{2}\pi_{C} \sigma + \frac{1}{2}\pi_{M} (1 - \sigma ) + g} \right] + \\ & - \overline{C}(\sigma ,g)\left[ {(1 - P_{M} )(1 - \sigma )^{\gamma } + (1 - P_{C} )\sigma^{\gamma } } \right]Z(\sigma ,g)^{\gamma } = Z(\sigma ,g)g + \rho A \\ \end{aligned} $$

If \(g > 0\), then \(\frac{{\partial \underline {W} }}{\partial \sigma } > 0\) by Lemma 4. If \(g = 0\), then \(\frac{{\partial \underline {W} }}{\partial \sigma } = 0\) since \(\underline {W} (\sigma ,g) = \rho A\). But in this case investing all resources in the safe asset would be best, which would make bank intermediation inessential. Thus, \(\frac{\partial W}{{\partial \sigma }} > 0\) for any admissible social cost function. Therefore, perfect bank competition \(\left( {\sigma = 1} \right)\) maximizes welfare. \(\hfill\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucchetta, M. Welfare and bank risk-taking. Ann Finance (2024). https://doi.org/10.1007/s10436-024-00440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10436-024-00440-x

Keywords

JEL Classification

Navigation