Skip to main content
Log in

Does Symmetry of the Operator of a Dynamical System Help Stability?

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this article, we address the question of relating the stability properties of an operator with the stability properties of its associate symmetric operator. The linear-algebra results of Bendixson and Hirsch indicate that the symmetric part of a matrix is always less stable than the matrix itself. We show that in a variety of cases, including infinite dimensional cases associated to systems of PDEs, the same result is valid. We also discuss the applicability to non-autonomous systems, and we show that, in general, this result is not valid. We also review some of the literature that in these years has appeared on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adam, M., Tsatsomero, M.J.: An eigenvalue inequality and spectrum localization for complex matrices. Electron. J. Linear Algebra 15, 239–250 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bellman, R.: Introduction to Matrix Analysis. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  3. Bendixson, I.O.: Sur les racines d’une équation fondamentale. Acta Math. 25, 359–365 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  4. I’a Bromwich, T.J.: On the roots of the characteristic equation of a linear substitution. Acta Math. 30, 297–304 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  5. Browne, E.T.: The characteristic equation of a matrix. Bull. Am. Math. Soc. 34(3), 363–368 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  7. Christensen, G.S.: A simple and fast algorithm for determining asymptotic stability of linear autonomous systems. Can. J. Electr. Comput. Eng. 28(3–4), 169–172 (2003)

    Article  Google Scholar 

  8. Christensen, G.S.: Uniform asymptotic stability of linear non-autonomous systems. Can. J. Electr. Comput. Eng. 28(3–4), 173–176 (2003)

    Article  Google Scholar 

  9. Christensen, G.S., Saif, M.: The asymptotic stability of nonlinear autonomous systems. Can. J. Electr. Comput. Eng. 32(1), 35–43 (2007)

    Article  Google Scholar 

  10. Diliberto, S.P.: A note on linear ordinary differential equations. Proc. Am. Math. Soc. 8(3), 462–464 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flavin, J.N., Rionero, S.: Qualitative Estimates for Partial Differential Equations: an Introduction. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  12. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. Éc. Norm. Super. 12, 47–88 (1883)

    MathSciNet  MATH  Google Scholar 

  13. Galdi, G.P., Rionero, S.: Weighted Energy Methods in Fluid Dynamics and Elasticity. Lecture Notes in Mathematics, vol. 1134. Springer, Berlin (1985)

    MATH  Google Scholar 

  14. Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry and nonlinear stability. Arch. Ration. Mech. Anal. 89, 211–228 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi, G.P., Straughan, B.: A nonlinear analysis of the stabilizing effect of rotation in the Bénard problem. Proc. R. Soc. Lond. A 402, 257–283 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hirsch, M.A.: Sur les racines d’une equation fondamentale. Acta Math. 25, 367–370 (1902). Extrait d’une lettre de, Hirsch, M.A. and Bendixson, M.I.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied Mathematics, vol. 60. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  19. Joseph, D.D.: Nonlinear stability of the boussinesq equations by the method of energy. Arch. Ration. Mech. Anal. 22, 163–184 (1966)

    Article  MATH  Google Scholar 

  20. Joseph, D.D.: Stability of Fluid Motions. Springer Tracts in Natural Philosophy, vol. 27, 28. Springer, Berlin (1976)

    Google Scholar 

  21. Lin, F.X.: Hartman’s linearization on nonautonomous unbounded system. Nonlinear Anal. 66(1), 38–50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lyapunov, A.M.: Stability of Motion. Academic Press, San Diego (1966)

    MATH  Google Scholar 

  23. Lombardo, S., Mulone, G., Trovato, M.: Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions. J. Math. Anal. Appl. 342, 461–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Markus, L., Yamabe, H.: Global stability criteria for differential systems. Osaka Math. J. 12, 305–317 (1960)

    MathSciNet  MATH  Google Scholar 

  25. McKluskey, C.C.: A strategy for costructing Lyapunov functions for non-autonomous linear differential equations. Linear Algebra Appl. 409, 100–110 (2005)

    Article  MathSciNet  Google Scholar 

  26. Mulone, G., Straughan, B.: An operative method to obtain necessary and sufficient stability conditions for double diffusive convection in porous media. Z. Angew. Math. Mech. 86, 507–520 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mulone, G.: Stabilizing effects in dynamical systems: linear and nonlinear stability conditions. Far East J. Appl. Math. 15(2), 117–134 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Mulone, G., Rionero, S.: Unconditional nonlinear exponential stability in the Bénard problem for a mixture: necessary and sufficient conditions. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 9, 221–236 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Murray, J.D.: Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

    Google Scholar 

  30. Palmer, K.J.: A characterization of exponential dichotomy in terms of topological equivalence. J. Math. Anal. Appl. 69, 8–16 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  31. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  32. Prodi, G.: Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Semin. Mat. Univ. Padova 32, 374–397 (1962)

    MathSciNet  MATH  Google Scholar 

  33. Rionero, S.: Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica. Ann. Mat. Pura Appl. 78, 339–364 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rionero, S.: A rigorous reduction of the L 2-stability of the solutions to a nonlinear binary reaction-diffusion system of PDEs to the stability of the solutions to a linear binary system of ODEs. J. Math. Anal. Appl. 319, 377–397 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rionero, S., Mulone, G.: A nonlinear stability analysis of the magnetic Bénard problem through the Lyapunov direct method. Arch. Ration. Mech. Anal. 103, 347–368 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sattinger, D.H.: The mathematical problem of hydrodynamic stability. J. Math. Mech. 19(9), 797–817 (1970)

    MathSciNet  MATH  Google Scholar 

  37. Straughan, B.: The Energy Method, Stability, and Nonlinear Convection, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Falsaperla.

Additional information

A. Giacobbe and P. Falsaperla have been partially supported by “Progetto Giovani Ricercatori 2011” of GNFM-INDAM, G.M. by the PRA of the University of Catania “Modelli in Fisica Matematica e Stabilità in Fluidodinamica, Termodinamica Estesa e Biomatematica”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falsaperla, P., Giacobbe, A. & Mulone, G. Does Symmetry of the Operator of a Dynamical System Help Stability?. Acta Appl Math 122, 239–253 (2012). https://doi.org/10.1007/s10440-012-9740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9740-0

Keywords

Navigation