Skip to main content

Advertisement

Log in

Trade-offs between sampling effort and data quality in habitat monitoring

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The transect method has been widely used to monitor habitat conservation status and has been recently recommended as the best tool to monitor steep ecological gradients, such as those in coastal systems. Despite that, the effectiveness of the transect approach can be limited when considering the sampling effort in terms of time needed for sampling. Our work aimed at evaluating the efficacy of the transect approach in a Mediterranean coastal system. Specifically we aimed at evaluating the sampling effort versus the completeness of datasets obtained by performing belt transects in different ways specifically designed to progressively reduce the sampling effort: (i) sampling plots adjacently (“adjacent-plot transect”); (ii) sampling plots alternately (“alternate-plot transect”); (iii) sampling one plot at each plant community along the vegetation zonation (“zonation-plot transect”). We evaluated method efficiency in terms of number and type of habitats identified, spatial extent, species richness and composition, through multivariate analyses, null models and rarefaction curves. The sampling effort was measured in terms of time needed for sampling. The zonation-plot transect had the lowest sampling effort, but provided only an approximation of the state of the dunal communities. The alternate-plot transect showed the best trade-off between the sampling effort and the completeness of information obtained, and may be considered as a efficient option in very wide coastal systems. Our research provides guidelines that can be used in other coastal systems to choose the most cost-effective monitoring method thereby maximising the efficient use of monitoring resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta A, Ercole S, Stanisci A, Pillar VDP, Blasi C (2007) Coastal vegetation zonation and dune morphology in some Mediterranean ecosystems. J Coast Res 23:1518–1524

    Article  Google Scholar 

  • Almeida D, Alcaraz-Hernandez JD, Merciai R, Benejam L, Garcia-Berthou E (2017) Relationship of fish indices with sampling effort and land use change in a large Mediterranean river. Sci Total Environ 605:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Angelini P, Casella L, Grignetti A, Genovesi P (2016) Manuali per il monitoraggio di specie e habitat di interesse comunitario (Direttiva 92/43/CEE) in Italia: habitat. ISPRA, Serie Manuali e linee guida, 142/2016

  • Bazzichetto M, Malavasi M, Acosta A, Carranza ML (2016) How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast. Ecol Indic 71:618–626

    Article  Google Scholar 

  • Biondi E, Blasi C, Burrascano S, Casavecchia S, Copiz R, Del Vico E, Galdenzi D, et al. (2009) Italian interpretation manual of the 92/43/EEC directive habitats. http://vnr.unipg.it/habitat/. Accessed 1 March 2017. Società Botanica Italiana. Ministero dell’Ambiente e della tutela del territorio e del mare, D.P.N

  • Biondi E, Casavecchia S, Pesaresi S (2012) Nitrophilous and ruderal species as indicators of climate change. Case study from the Italian Adriatic coast. Plant Biosyst 146:134–142

    Article  Google Scholar 

  • Bland LM, Keith DA, Miller RM, Murray NJ, Rodríguez JP (2016) Guidelines for the application of IUCN Red List of ecosystems categories and criteria, Version 1.1. IUCN, Gland Switzerland

  • Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29(1):62–77

    Article  Google Scholar 

  • Buffa G, Filesi L, Gamper U, Sburlino G (2007) Qualità e grado di conservazione del paesaggio vegetale del litorale sabbioso del Veneto (Italia settentrionale). Fitosociologia 44:49–58

    Google Scholar 

  • Caniglia G (2007) Stato attuale dei litorali del veneto. Fitosociologia 44:59–65

    Google Scholar 

  • Carpaneto GM, Campanaro A, Hardersen S, Audisio P, Bologna MA, Roversi PF, Peverieri GS et al (2017) The LIFE Project “Monitoring of insects with public participation” (MIPP): aims, methods and conclusions. Nat Conserv 20:1–35

    Article  Google Scholar 

  • Celesti-Grapow L, Pretto F, Carli E, Blasi C (2010) Flora vascolare alloctona e invasiva delle regioni d’Italia. Casa Editrice Università La Sapienza, Roma

    Google Scholar 

  • Ciccarelli D (2014) Mediterranean coastal sand dune vegetation: influence of natural and anthropogenic factors. Environ Manage 54:194–204

    Article  PubMed  Google Scholar 

  • Colwell R K (2013). EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates. Accessed 1 March 2018

  • Commission European (2013) Interpretation manual of European Union habitats—EUR28. European Commission DG Environment, Brussels

    Google Scholar 

  • Conn PB, Moreland EE, Regehr EV, Richmond EL, Cameron MF, Boveng PL (2016) Using simulation to evaluate wildlife survey designs: polar bears and seals in the Chukchi Sea. R Soc Open Sci 3:150–561

    Article  CAS  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, Roma

    Google Scholar 

  • Del Vecchio S, Acosta A, Stanisci A (2013) The impact of Acacia saligna invasion on Italian coastal dune EC habitats. C R Biol 336:364–369

    Article  PubMed  Google Scholar 

  • Del Vecchio S, Pizzo L, Buffa G (2015) The response of plant community diversity to alien invasion: evidence from a sand dune time series. Biodivers Conserv 24:371–392

    Article  Google Scholar 

  • Del Vecchio S, Slaviero A, Fantinato E, Buffa G (2016) The use of plant community attributes to detect habitat quality in coastal environments. AoB Plants. https://doi.org/10.1093/aobpla/plw040

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Vecchio S, Fantinato E, Janssen JAM, Bioret F, Acosta A, Prisco I, Tzonev R, Marcenò C, Rodwell J, Buffa G (2018) Biogeographic variability of coastal perennial grasslands at the European scale. Appl Veg Sci 21:312–321

    Article  Google Scholar 

  • Dengler J (2009) Which function describes the species-area relationship best? A review and empirical evaluation. J Biogeogr 36:728–744

    Article  Google Scholar 

  • Dengler J, Chytrý M, Ewald J (2008) Phytosociology. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Oxford, pp 2767–2779

    Chapter  Google Scholar 

  • Evans D, Arvela M (2011) Assessment and reporting under the habitats directive. European Topic Centre on Biological Diversity, Paris

    Google Scholar 

  • Fenu G, Carboni M, Acosta A, Bacchetta G (2012) Environmental factors influencing coastal vegetation pattern: new insights from the Mediterranean basin. Folia Geobot 48:493–508

    Article  Google Scholar 

  • Gamper U, Filesi L, Buffa G, Sburlino G (2008) Diversità fitocenotica delle dune costiere nordadriatiche 1—Le comunità fanerofitiche. Fitosociologia 45:3–21

    Google Scholar 

  • Geri F, La Porta N, Zottele F, Ciolli M (2016) Mapping historical data: recovering a forgotten floristic and vegetation database for biodiversity monitoring. Isprs Int Geo-Inf 5:100

    Article  Google Scholar 

  • Gigante D, Attorre F, Venanzoni R et al (2016a) A methodological protocol for Annex I Habitats monitoring: the contribution of vegetation science. Plant Sociol 53:77–78

    Google Scholar 

  • Gigante D, Foggi B, Venanzoni R, Viciani D, Buffa G (2016b) Habitats on the grid: the spatial dimension does matter for red-listing. J Nat Conserv 32:1–9

    Article  Google Scholar 

  • Gigante D, Acosta ATR, Agrillo E, Armiraglio S, Assini S, Attorre F, Bagella S, Buffa G, Casella L, Giancola C, Giusso del Galdo GP, Marcenò C, Pezzi G, Prisco I, Venanzoni R, Viciani D (2018) Habitat conservation in Italy: the state of the art in the light of the first European Red List of Terrestrial and Freshwater Habitats. Rend Fis Acc Lincei 29:251–265

    Article  Google Scholar 

  • Gotelli NJ, Entsminger GL (2001) EcoSim: null models software for ecology. Version 7. Jericho, VT, Acquired Intelligence Inc. & Kesey-Bear. http://garyentsminger.com/ecosim/index.htm. Accessed 1 February 2018

  • Henle K, Bauch B, Auliya M, Kuelvik M, Pe’er G, Schmeller DS, Framstad E (2013) Priorities for biodiversity monitoring in Europe: a review of supranational policies and a novel scheme for integrative prioritization. Ecol Indic 33:5–18

    Article  Google Scholar 

  • Hennekens SM (1996) TURBO(VEG). Software package for input, processing, and presentation of phytosociological data. IBN-DLO Wageningen, NL and University of Lancaster, UK

  • Hill D, Fasham M, Tucker G, Shewry M, Shaw P (eds) (2005) Handbook of biodiversity methods, survey, evaluation and monitoring. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes BB, Beas-Luna R, Barner AK, Brewitt K, Brumbaugh DR, Cerny-Chipman EB, Close SL et al (2017) Long-term studies contribute disproportionately to ecology and policy. Bioscience 67:271–281

    Article  Google Scholar 

  • Ivajnšič D, Kaligarič M, Fantinato E, Del Vecchio S, Buffa G (2018) The fate of coastal habitats in the Venice Lagoon from the sea level rise perspective. Appl Geogr 98:34–42

    Article  Google Scholar 

  • Janssen J, Rodwell J, García Criado M, Gubbay S, Haynes T, Nieto A, Sanders N et al (2016) European Red List of Habitats. European Union, Luxembourg

    Google Scholar 

  • Jonsson BG, Moen J (1998) Patterns in species associations in plant communities: the importance of scale. J Veg Sci 9:327–332

    Article  Google Scholar 

  • Jucker T, Carboni M, Acosta A (2013) Going beyond taxonomic diversity: deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Divers Distrib 19:1566–1577

    Article  Google Scholar 

  • Keith DA, Rodríguez JP, Rodríguez-Clark KM, Nicholson E, Aapala K, Alonso A, Asmussen M et al (2013) Scientific foundations for an IUCN Red List of ecosystems. PLoS ONE 8:1–25

    Article  CAS  Google Scholar 

  • Kent M, Coker P (1992) Vegetation description and analyses. A practical approach. Belhaven Press, London

    Google Scholar 

  • Lindenmayer DB, Likens GE (2010) The science and application of ecological monitoring. Biol Conserv 143:1317–1328

    Article  Google Scholar 

  • Lovett GM, Burns DA, Driscoll CT, Jenkins JC, Mitchell MJ, Rustad L, Shanley JB et al (2007) Who needs environmental monitoring? Front Ecol Environ 5:253–260

    Article  Google Scholar 

  • Martínez Pastur G, Peri PL, Soler RM, Schindler S, Lencinas MV (2016) Biodiversity potential of Nothofagus forests in tierra del fuego (argentina): tool proposal for regional conservation planning. Biodivers Conserv 25:1843–1862

    Article  Google Scholar 

  • Maun MA (2009) The biology of coastal sandy dunes. Oxford University Press, Oxford

    Google Scholar 

  • McCune B, Mefford MJ (2006) PC-ORD multivariate analysis of ecological data. Version 5. Gleneden Beach, MjM Software, Oregon

  • McDonald-Madden E, Baxter PWJ, Fuller RA, Martin TG, Game ET, Montambault J, Possingham HP (2010) Monitoring does not always count. Trends Ecol Evol 25:547–550

    Article  PubMed  Google Scholar 

  • Meyer C, Weigelt P, Kreft H (2016) Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol Lett 19:992–1006

    Article  PubMed  Google Scholar 

  • Mikulyuk A, Hauxwell J, Rasmussen P, Knight S, Wagner KI, Nault ME, Ridgely D (2010) Testing a methodology for assessing plant communities in temperate inland lakes. Lake Reserv Manage 26:54–62

    Article  CAS  Google Scholar 

  • Peet RK, Roberts DW (2013) Classification of natural and semi-natural vegetation. In: van der Maarel E, Franklin J (eds) Vegetation ecology, 2nd edn. Oxford University Press, New York, pp 28–70

    Chapter  Google Scholar 

  • Prisco I, Acosta A, Ercole S (2012) An overview of the Italian coastal dune EU habitats. Ann Bot 2:39–48

    Google Scholar 

  • Prisco I, Stanisci A, Acosta A (2016) Mediterranean dunes on the go: evidence from a short term study on coastal herbaceous vegetation. Estuar Coast Shelf Sci 182:40–46

    Article  Google Scholar 

  • Rocchini D, Garzon-Lopez CX, Marcantonio M, Amici V, Bacaro G, Bastin L, Brummitt N et al (2017) Anticipating species distributions: handling sampling effort bias under a Bayesian framework. Sci Total Environ 584:282–290

    Article  CAS  PubMed  Google Scholar 

  • Sburlino G, Buffa G, Filesi L, Gamper U (2008) Phytocoenotic originality of the N-Adriatic coastal sand dunes (Northern Italy) in the European context: the Stipa veneta-rich communities. Plant Biosyst 142:533–539

    Article  Google Scholar 

  • Sburlino G, Buffa G, Filesi L, Gamper U, Ghirelli L (2013) Phytocoenotic diversity of the N-Adriatic coastal sand dunes—the herbaceous communities of the fixed dunes and the vegetation of the interdunal wetlands. Plant Sociol 50:57–77

    Google Scholar 

  • Silan G, Del Vecchio S, Fantinato E, Buffa G (2017) Habitat quality assessment through a multifaceted approach: the case of the habitat 2130* in Italy. Plant Sociol 54:13–22

    Google Scholar 

  • Šilc U, Stevanović ZD, Ibraliu A, Luković M, Stešević D (2016) Human impact on sandy beach vegetation along the southeastern Adriatic coast. Biologia 71:865–874

    Article  Google Scholar 

  • Simeoni U, Valpreda E, Corbau C (2010) A national database on coastal dunes: Emilia-Romagna and southern Veneto littorals (Italy). In: Green D (ed) Coastal and marine geospatial technologies. Springer, Dordrecht, pp 87–96

    Chapter  Google Scholar 

  • Sperandii MG, Prisco I, Acosta A (2018) Hard times for italian coastal dunes: insights from a diachronic analysis based on random plots. Biodivers Conserv 27:633–646

    Article  Google Scholar 

  • Stanisci A, Acosta A, Carranza M, De Chiro M, Del Vecchio S, Di Martino L, Frattaroli A et al (2014) EU habitats monitoring along the coastal dunes of the LTER sites of Abruzzo and Molise (Italy). Plant Sociol 51:51–56

    Google Scholar 

  • Swacha G, Botta-Dukat Z, Kacki Z, Pruchniewicz D, Zolnierz L (2017) A performance comparison of sampling methods in the assessment of species composition patterns and environment-vegetation relationships in species-rich grasslands. Acta Soc Bot Pol 86:15

    Article  Google Scholar 

  • Westhoff V, van der Maarel E (1973) The Braun-Blanquet approach. In: Whittaker RH (ed) Handbook of vegetation science, part 5, Classification and ordination of communities. Dr. W. Junk, The Hague, pp 617–726

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Del Vecchio.

Additional information

Communicated by Daniel Sanchez Mata.

This article belongs to the Topical Collection: Biodiversity protection and reserves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10531_2018_1636_MOESM1_ESM.pdf

Online Resource 1 DCA scatter diagram and cluster dendrogram of vegetation plots, for the three types of transects. Technical results of multivariate analyses relative to each transect are summarized in tables OR1, OR2, and OR3, respectively. The habitat 2130* was represented by 2 plant communities, one dominated by chamaephytes, with prevalence of Fumana procumbens and Helianthemum nummularium ssp. obscurum, corresponding to Tortulo-Scabiosetum, and one with prevalence of Lomelosia argentea and Medicago littoralis, corresponding to Sileno conicae-Avellinietum michelii. Plant communities nomenclature follows Sburlino et al. (2013). Supplementary material 1 (PDF 568 kb)

10531_2018_1636_MOESM2_ESM.pdf

Online Resource 2 Species composition and cover for each plant community in each type of transect. Focal species were only defined for Natura 2000 habitat types. Species nomenclature follows Conti et al. (2005). * Priority habitats (EU Habitat Directive). Supplementary material 2 (PDF 184 kb)

10531_2018_1636_MOESM3_ESM.pdf

Online Resource 3 Rarefaction curves of the indicator species groups for each plant community, in the adjacent- and alternate-plot transect. Bars represent the 95% confidence interval. The zonation-plot transect, as well as the habitat 1210 are not shown. Focal species of Helichrysum and Spartina communities are not shown, since they were not recognized as Natura 2000 habitats. Supplementary material 3 (PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Vecchio, S., Fantinato, E., Silan, G. et al. Trade-offs between sampling effort and data quality in habitat monitoring. Biodivers Conserv 28, 55–73 (2019). https://doi.org/10.1007/s10531-018-1636-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1636-5

Keywords

Navigation