Skip to main content
Log in

A Low Rhodium Content Smart Catalyst for Hydrogenation and Hydroformylation Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This paper describes the preparation, broad characterization and study of activity in hydrogenation and hydroformylation reactions of an easily produced 0.18% Rh/Al2O3. Analytical studies on fresh and recycled samples shed light on the smart properties of such catalyst. Results showed high activity as well as fine/excellent chemoselectivity or regioselectivity, characteristics that may suggest a wide range of applicability.

Graphic Abstract

The low metal content catalyst 0.18% Rh/Al2O3 was very active in both hydrogenation and hydroformylation reactions so providing intermediates for valuable APIs, as Nabumetone and Eletriptan, and a fragrance with a fresh, green-floral smell, that recalls scent of lily of the valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Scheme 2
Scheme 3
Scheme 4
Fig. 9
Fig. 10
Scheme 5

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

References

  1. Blaser HU (2000) Catal Today 60:161

    Article  CAS  Google Scholar 

  2. Bartolomew CH, Farrauto RJ (2006) Fundamentals of Industrial Catalytic Processes, 2nd edn. Wiley, Hoboken

    Google Scholar 

  3. Varga E, Pusztai P, Oszkó A, Baán K, Erdőhelyi A, Kónya Z, Kiss J (2016) Langmuir 32:2761–2770

  4. Song T, Ma Z, Yang Y (2019) ChemCatChem 11:1313

    Article  CAS  Google Scholar 

  5. Mendes-Burak J, Ghaffari B, Copéret C (2019) ChemCommun 55:179–181

    CAS  Google Scholar 

  6. Louis C, Delannoy L (2019) AdvCatal 64:1

    CAS  Google Scholar 

  7. Reddy SK, Enumula SS, Koppadi KS, Kamaraju SRR, Burri DR (2020) MolCatal 482:110686

    Google Scholar 

  8. Zhang L, Zhou M, Wang A, Zhang T (2020) Chem Rev 120:683

    Article  CAS  Google Scholar 

  9. Cavuoto D, Zaccheria F, Marelli M, Evangelisti C, Piccolo O, Ravasio N (2020) Catalysts 10:515

    Article  CAS  Google Scholar 

  10. Campelo JM, Garcia A, Luna D, Marinas JM (1984) React KinetCatalLett 26:73

    CAS  Google Scholar 

  11. Yamaguchi M, Nitta A, Reddy RS, Hirama M (1999) Synlett 117

  12. Fagassy G, Hegedus L, Tungler A, Lévai A, Màthé T (2000) J MolCatal 154:237

    Google Scholar 

  13. Dell’Anna MM, Gallo V, Mastrorilli P, Romanazzi G (2010) Molecules 15:3311

    Article  Google Scholar 

  14. Piccolo O, Verrazzani A (2006) US 7087548 (Chemi SpA)

  15. Amsler J, Sarma BB, Agostini G, Prieto G, Plessow PN, Studt F (2020) J Am ChemSoc 142:5087

    Article  CAS  Google Scholar 

  16. Lenarda M, Ganzerla R, Paganelli S, Storaro L, Zanoni R (1996) J MolCatal A: Chem 105:117

    Article  CAS  Google Scholar 

  17. Dharmidhikari S, Abraham MA (2000) J Supercrit Fluids 18:1

    Article  CAS  Google Scholar 

  18. Jagtap SA, Bhosale MA, Sasaki T, Bhanage BM (2016) Polyhedron 120:162

    Article  CAS  Google Scholar 

  19. Armarego WLF (2017) Purification of laboratory chemicals, 8th edn. Elsevier, Oxford

    Google Scholar 

  20. Rathod VD, Paganelli S, Piccolo O (2016) CatalCommun 84:52

    CAS  Google Scholar 

  21. Bumagin NA, Kasatkin AN, Beletskaya IP (1984) SeriyaKhimicheskaya 8:1858

    Google Scholar 

  22. Souza Santos P, Souza Santos H, Toledo SP (2000) Mat Res 3:104–114

    Article  Google Scholar 

  23. Rozita Y, Brydson R, Scott AJ (2009) J Phys 241:12096

    Google Scholar 

  24. Peri JB (1965) J PhysChem 69:231

    CAS  Google Scholar 

  25. Tsyganenko AA, Pozdnyakov DV, Filimonov VN (1975) J MolStruct 29:299

    Article  CAS  Google Scholar 

  26. Basile F, Bersani I, Del Gallo P, Fiorilli S, Fornasari G, Gary D, Mortera R, Onida B, Vaccari A (2011) Int J Spectr Hindawi, Article ID 458089.

  27. Yates C (1979) J ChemPhys 71:3908

    CAS  Google Scholar 

  28. Solymosi F (1985) Pásztor M 89:4789–4793

    CAS  Google Scholar 

  29. Bergeret G, Gallezot P, Gelin P, Taarit BY, Lefebvre F, Naccache C, Shannon RD (1987) J Catal 104:279–287

    Article  CAS  Google Scholar 

  30. Kukovecz Á, Pótári G, Oszkó A, Kónya Z, Erdőhelyi A, Kiss J (2011) Surf Sci 605:1048–1055

    Article  CAS  Google Scholar 

  31. Kukovecz Á, Kordás K, Kiss J, Kónya Z (2016) Surf Sci Rep 71:473–546

    Article  CAS  Google Scholar 

  32. Hedne T, Samulesson O, Währborg P, Wadenvik H, Ung KA, Ekbom A (2004) Drugs 64:2315

    Article  Google Scholar 

  33. Newport Premium Dabase; https://clarivate.com/tag/newport-premium/

  34. Gaster LM (1980) US 4221741, (Beecham Group Ltd)

  35. Ramachandran V, Belmont S (1998) US 5847225, (Albemarle Corp.)

  36. Ravasio N, Zaccheria F, Allegrini P, Ercoli M (2007) Catal Today 121:2

    Article  CAS  Google Scholar 

  37. Evangelisti C, Panziera N, Vitulli M, Pertici P, Balzano F, Uccello-Barretta G, Salvadori P (2008) ApplCatal A Gen 339:84

    Article  CAS  Google Scholar 

  38. Viviano M, Glasnov TN, Reichart B, Tekautz G, Kappe CO (2011) Org Process Res Dev 15:858

    Article  CAS  Google Scholar 

  39. Macor JE, Wythes JM (1996) US 5545644, (Pfizer Inc.)

  40. R J (2007) US 7288662, (Pfizer Inc.)

  41. Serafini S, Castellin A, Dal Santo C (2013) US 8426612, (F.I.S. SpA)

  42. Rao SV, Shrikant HH, Kumar BS, Krishna GS (2017) Asian J Chem 29:2232

    Article  CAS  Google Scholar 

  43. Potluri RB, Kodali HP, Venturi SR, Tadimalla VS (2011) WO2011024039

  44. Pullagurla MR, Rangisetty JB, Naidu N, Maddela N, Nagarapu R, Polagani PR (2014) US 8633239.

  45. Ranu BC, Guchhait SK, Ghosh K (1998) J Org Chem 63:5250

    Article  CAS  Google Scholar 

  46. Laxminarayana K, Rajendiran C, Mukkanti K (2013) Asian J Chem 25:1661

    CAS  Google Scholar 

  47. Kusumba VG, Sankineni SK, Neela PK, Pradhan NS, Valgeirsson J (2010) US 2010285075 (Actavis Group)

  48. Tassini R, La Sorella G, Montin D, Paganelli S, Baldi F, Piccolo O (2012) Chimica e Industria 94:157

    CAS  Google Scholar 

  49. Paganelli S, Piccolo O, Rathod VD (2016) XIX Congresso Nazionale di Catalisi GIC, Padova

  50. Cornils B, Börner A, Franke R, Zhang B, Wiebus E, Schmid K (2018) In: Cornils B, Hermann WA, Beller M, Paciello R (eds) Applied homogeneous catalysis with organometallic compounds. Wiley, Weinheim

    Google Scholar 

Download references

Acknowledgements

Role of the authors. OP and SP: conceptualization, supervision, writing-original draft preparation, writing-reviewing and editing; RT and VDR investigation; BO and SF some methodology for the characterization of the catalyst. All authors approved final manuscript. The authors are also grateful to Dr. Laura Sperni (Ca' Foscari University of Venice) for GC–MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Paganelli or Oreste Piccolo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paganelli, S., Tassini, R., Rathod, V.D. et al. A Low Rhodium Content Smart Catalyst for Hydrogenation and Hydroformylation Reactions. Catal Lett 151, 1508–1521 (2021). https://doi.org/10.1007/s10562-020-03407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03407-5

Keywords

Navigation