Skip to main content
Log in

Levulinic Acid Production: Comparative Assessment of Al-Rich Ordered Mesoporous Silica and Microporous Zeolite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, the formation of levulinic acid (LA) as one of the top-twelve chemical building blocks from glucose was studied. In particular, the formulations of heterogeneous acid catalysts based on SBA-15, MCM-41 mesoporous silica was carried out and their performance in catalytic conversion of glucose to LA were assessed and compared with commercial H-Beta-25 (SiO2/Al2O3 = 25) microporous zeolite. The high surface area, suitable porosity, balanced acid sites were considered as the main factors of a proper catalytic performance. Thus, essential modification of mesoporous SBA-15 and MCM-41 materials was carried out by introducing Al in their structures for Lewis acid sites improvement. Alumina was introduced to SBA-15 by post synthesis evaporation impregnation method while it was embedded inside the MCM-41 mesoporous material during the synthesis. In addition, Brønsted acidity was introduced via post-synthesis grafting of sulfonic acid groups. The textural and morphological features and acidity of the materials were investigated using N2 physisorption, SEM, EDX, TEM, XRD and pyridine-FTIR. All catalysts were tested for aqueous glucose conversion in an autoclave at 180 °C. Al-MCM-SO3H has shown the best performance with 54% of LA yield after 4 h reaction. According to Py-FTIR introduction of alumina and sulfonic acid groups improved weak and medium Lewis and Brønsted acid sites. However, the Brønsted to Lewis acid site ratio (B/L) was higher for Al-MCM-SO3H compared to SBA-Al-SO3H leading the reaction pathway to LA. H-Beta-25 zeolite displayed a poor performance because of harsh medium and strong acid sites catalyzing humins formation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Signoretto M, Taghavi S, Ghedini E,  Menegazzo F (2019) Molecules 24:1–20

    Article  Google Scholar 

  2. Yu IKM, Xiong X, Tsang DCW, Wang L, Hunt AJ, Song H, Shang J, Ok YS, Poon CS (2019) Green Chem 21:1267–1281

    Article  CAS  Google Scholar 

  3. Shen Y, Sun J, Yi Y, Wang B, Xu F, Sun R (2014) J Mol Catal A Chem 394:114–120

    Article  CAS  Google Scholar 

  4. Li J, Ding DJ, Xu LJ, Guo QX, Fu Y (2014) RSC Adv 4:14985–14992

    Article  CAS  Google Scholar 

  5. Dutta S, De S, Saha B (2013) Biomass Bioenergy 55:355–369

    Article  CAS  Google Scholar 

  6. Kang M, Kim SW, Kim JW, Kim TH (2013) Kim J S 54:173–179

    CAS  Google Scholar 

  7. Sudhakar M, Kumar VV, Naresh G, Kantam ML, Bhargava SK, Venugopal A (2016) Appl Catal B 180:113–120

    Article  CAS  Google Scholar 

  8. Kang S, Fu J, Zhang G (2018) Renew Sustain Energy Rev 94:340–362

    Article  CAS  Google Scholar 

  9. Yu IKM, Tsang DCW, Yip ACK, Chen SS, Ok YS, Poon CS (2016) Biores Technol 219:338–347

    Article  CAS  Google Scholar 

  10. Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH (2017) Chem Eng J 328:246–273

    Article  CAS  Google Scholar 

  11. Lam E, Luong JHT (2014) ACS Catal 4:3393–3410

    Article  CAS  Google Scholar 

  12. Sarkar J, Bhattacharyya S (2012) Arch Thermodyn 33:23–40

    Article  CAS  Google Scholar 

  13. Taghavi S, Ghedini E, Menegazzo F, Signoretto M, Gazzoli D, Pietrogiacomi D, Matayeva A, Fasolini A, Vaccari A, Basile F, Fornasari G (2020) Processes 8:1–16

    Article  Google Scholar 

  14. Zhuang J, Pang C, Liu Y (2013) Appl Mech Mater 291–294:782–785

    Article  Google Scholar 

  15. Kumar K, Kumar M, Upadhyayula S (2021) Molecules 26:384

    Article  Google Scholar 

  16. Saenluang K, Thivasasith A, Dugkhuntod P, Pornsetmetakul P, Salakhum S, Namuangruk S, Wattanakit C (2020) Catalysts 10:1–12

    Article  Google Scholar 

  17. Zhao XS, Lu GQ, Millar GJ (1996) Ind Eng Chem Res 35:2075–2090

    Article  CAS  Google Scholar 

  18. Cesteros Y, Haller GL (2001) Microporous Mesoporous Mater 43:171–179

    Article  CAS  Google Scholar 

  19. Corma A, Navarro MT, Pérez-Pariente J, Sánchez F (1994) Stud Surf Sci Catal 84:69–75

    Article  CAS  Google Scholar 

  20. Cabrera-Munguia DA, González H, Tututi-Ríos E, Gutiérrez-Alejandre A, Rico JL (2018) J Mater Res 33:3634–3645

    Article  CAS  Google Scholar 

  21. Araújo RS, Costa FS, Maia DAS, Sant Ana HB, Cavalcante C (2007) Braz J Chem Eng 24:135–141

    Article  Google Scholar 

  22. Naik SP, Bui V, Ryu T, Miller JD, Zmierczak W (2010) Appl Catal A 381:183–190

    Article  CAS  Google Scholar 

  23. Cai Y, Xu X, Wang H, Wang L, Chen L, Li R, Ding J, Wan H, Guan G (2018) Ind Eng Chem Res 57:3844–3854

    Article  CAS  Google Scholar 

  24. Pizzolitto C, Ghedini E, Menegazzo F, Signoretto M, Giordana A, Cerrato G, Cruciani G (2019) Catal Today 345:183–189

    Article  Google Scholar 

  25. Suacharoen S, Tungasmita DN (2013) J Chem Technol Biotechnol 88:1538–1544

    Article  CAS  Google Scholar 

  26. Jiménez-Morales I, Moreno-Recio M, Santamaría-González J, Maireles-Torres P, Jiménez-López A (2015) Appl Catal B 164:70–76

    Article  Google Scholar 

  27. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  28. Pizzolitto C, Ghedini E, Taghavi S, Menegazzo F, Cruciani G, Peurla M, Eränen K, Heinmaa I, Aho A, Kumar N, Murzin DY, Salmi T, Signoretto M (2021) Microporous Mesoporous Mater 328:111459

    Article  CAS  Google Scholar 

  29. Brunauer S, Emmett PH (1937) Determ Surf Areas Various Adsorb 50:2682–2689

    Google Scholar 

  30. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  31. Emeis CA (1993) J Catal 141:347–354

    Article  CAS  Google Scholar 

  32. van Grieken R, Escola JM, Moreno J, Rodríguez R (2009) Chem Eng J 155:442–450

    Article  Google Scholar 

  33. Botková ČL, Setnička M, Bulánek R, Čičmanec P, Kalužová A, Pastva J, Zukal A (2016) React Kinet Mech Catal 119:319–333

    Article  Google Scholar 

  34. Ghedini E, Menegazzo F, Signoretto M, Manzoli M, Pinna F, Strukul G (2010) J Catal 273:266–273

    Article  CAS  Google Scholar 

  35. Das D, Lee JF, Cheng S (2001) Chem Commun 21:2178–2179

    Article  Google Scholar 

  36. Katiyar A, Yadav S, Smirniotis PG, Pinto NG (2006) J Chromatogr A 1122:13–20

    Article  CAS  Google Scholar 

  37. Hermida L, Zuhairi A, Rahman A (2011) Chem Eng J 174:668–676

    Article  CAS  Google Scholar 

  38. Chen Y, Shi X, Han B, Qin H, Li Z, Lu Y, Wang J, Kong Y (2012) J Nanosci Nanotechnol 12:7239–7249

    Article  CAS  Google Scholar 

  39. Melero JA, Stucky GD, van Grieken R, Morales G (2002) J Mater Chem 12:1664–1670

    Article  CAS  Google Scholar 

  40. Hermida L, Abdullah AZ, Mohamed AR (2011) Chem Eng J 174:668–676

    Article  CAS  Google Scholar 

  41. Sasidharan M, Bhaumik A (2013) J Mol Catal A Chem 367:1–6

    Article  CAS  Google Scholar 

  42. Pirez C, Lee AF, Manayil JC, Parlett CMA, Wilson K (2014) Green Chem 16:4506–4509

    Article  CAS  Google Scholar 

  43. Khodakov AY, Zholobenko VL, Bechara R, Durand D (2005) Microporous Mesoporous Mater 79:29–39

    Article  CAS  Google Scholar 

  44. Rostamizadeh S, Azad M, Shadjou N, Hasanzadeh M (2012) Catal Commun 25:83–91

    Article  CAS  Google Scholar 

  45. Lanzafame P, Perathoner S, Centi G, Heracleous E, Iliopoulou EF, Triantafyllidis KS, Lappas AA (2017) ChemCatChem 9:1632–1640

    Article  CAS  Google Scholar 

  46. Martínez-Franco R, Paris C, Martínez-Armero ME, Martínez C, Moliner M, Corma A (2016) Chem Sci 7:102–108

    Article  Google Scholar 

  47. Torozova A, Mäki-Arvela P, Aho A, Kumar N, Smeds A, Peurla M, Sjöholm R, Heinmaa I, Korchagina DV, Volcho KP, Salakhutdinov NF, Murzin DY (2015) J Mol Catal A Chem 397:48–55

    Article  CAS  Google Scholar 

  48. Crisci AJ, Tucker MH, Lee MY, Jang SG, Dumesic JA, Scott SL (2011) ACS Catal 1:719–728

    Article  CAS  Google Scholar 

  49. Jiménez-Morales I, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2014) Fuel 118:265–271

    Article  Google Scholar 

  50. Jow J, Rorrer GL, Hawley MC, Lamport DTA (1987) Biomass 14:185–194

    Article  CAS  Google Scholar 

  51. Ya’Aini N, Amin NAS, Endud S (2013) Microporous and Mesoporous Mater 171:14–23

    Article  Google Scholar 

  52. Yang L, Tsilomelekis G, Caratzoulas S, Vlachos DG (2015) Chemsuschem 8:1334–1341

    Article  CAS  Google Scholar 

  53. Flannelly T, Lopes M, Kupiainen L, Dooley S, Leahy JJ (2016) RSC Adv 6:5797–5804

    Article  CAS  Google Scholar 

  54. Miloni D (1974) Nanotechnology applications to telecommunications and networking. Wiley, Hoboken

    Google Scholar 

  55. Velaga B, Parde RP, Soni J, Peela NR (2019) Microporous Mesoporous Mater 287:18–28

    Article  CAS  Google Scholar 

  56. Angellinnov F, Yusuf H, Rahayu DUC, Krisnandi YK (2020) AIP Conf Proc 2243:020001

    Article  CAS  Google Scholar 

  57. Garcés D, Faba L, Díaz E, Ordóñez S (2019) Chemsuschem 12:924–934

    Google Scholar 

  58. Shao Y, Sun K, Zhang L, Xu Q, Zhang Z, Li Q, Zhang S, Wang Y, Liu Q, Hu X (2019) Green Chem 21:6634–6645

    Article  CAS  Google Scholar 

  59. Brahmi L, Ali-Dahmane T, Hamacha R, Hacini S (2016) J Mol Catal A Chem 423:31–40

    Article  CAS  Google Scholar 

  60. Girisuta B, Janssen LPBM, Heeres HJ (2006) Chem Eng Res Des 84:339–349

    Article  CAS  Google Scholar 

  61. Otomo R, Yokoi T, Kondo JN, Tatsumi T (2014) Appl Catal A 470:318–326

    Article  CAS  Google Scholar 

  62. Moreno-Recio M, Santamaría-González J, Maireles-Torres P (2016) Chem Eng J 303:22–30

    Article  CAS  Google Scholar 

  63. Lara-Serrano M, Morales-DelaRosa S, Campos-Martin JM, Abdelkader-Fernández VK, Cunha-Silva L, Balula SS (2021) Sustain Energy Fuels 5:3847–3857

    Article  CAS  Google Scholar 

  64. Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner WC, Dumesic JA, Huber GW (2013) J Catal 304:123–134

    Article  CAS  Google Scholar 

  65. Swift TD, Nguyen H, Erdman Z, Kruger JS, Nikolakis V, Vlachos DG (2016) J Catal 333:149–161

    Article  CAS  Google Scholar 

  66. Körner P, Jung D, Kruse A (2019) ChemistryOpen 8:1121–1132

    Article  Google Scholar 

  67. Thapa AI, Mullen B, Saleem A, Baker RT, Giorgi JB (2017) Appl Catal A 539:70–79

    Article  CAS  Google Scholar 

  68. Di Fidio N, Fulignati S, De Bari I, Antonetti C, Raspolli Galletti AM (2020) Bioresour Technol 313:123650

    Article  Google Scholar 

  69. Li Z, Su K, Ren J, Yang D, Cheng B, Kim CK, Yao X (2018) Green Chem 20:863–872

    Article  CAS  Google Scholar 

  70. Xiong Y, Chen W, Zeng A (2017) Res Chem Intermed 43:1557–1574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Signoretto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavi, S., Pizzolitto, C., Ghedini, E. et al. Levulinic Acid Production: Comparative Assessment of Al-Rich Ordered Mesoporous Silica and Microporous Zeolite. Catal Lett 153, 41–53 (2023). https://doi.org/10.1007/s10562-022-03955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03955-y

Keywords

Navigation