Skip to main content
Log in

Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper deals with an analysis of the Conjugate Gradient (CG) method (Hestenes and Stiefel in J Res Nat Bur Stand 49:409–436, 1952), in the presence of degenerates on indefinite linear systems. Several approaches have been proposed in the literature to issue the latter drawback in optimization frameworks, including reformulating the original linear system or recurring to approximately solving it. All the proposed alternatives seem to rely on algebraic considerations, and basically pursue the idea of improving numerical efficiency. In this regard, here we sketch two separate analyses for the possible CG degeneracy. First, we start detailing a more standard algebraic viewpoint of the problem, suggested by planar methods. Then, another algebraic perspective is detailed, relying on a novel recently proposed theory, which includes an additional number, namely grossone. The use of grossone allows to work numerically with infinities and infinitesimals. The results obtained using the two proposed approaches perfectly match, showing that grossone may represent a fruitful and promising tool to be exploited within Nonlinear Programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amodio, P., Iavernaro, F., Mazzia, F., Mukhametzhanov, M.S., Sergeyev, Y.D.: A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic. Math. Comput. Simulat. 141, 24–39 (2017)

  2. Cococcioni, M., Pappalardo, M., Sergeyev, Y.D.: Towards lexicographic multi-objective linear programming using grossone methodology. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds.) Proceedings of the 2nd International Conference on “Numerical Computations: Theory and Algorithms”, vol. 1776, p. 090040. AIP Publishing, New York (2016)

  3. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS–SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  Google Scholar 

  4. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–8082 (2012)

    MathSciNet  MATH  Google Scholar 

  5. D’Alotto, L.: A classification of one-dimensional cellular automata using infinite computations. Appl. Math. Comput. 255, 15–24 (2015)

    MathSciNet  MATH  Google Scholar 

  6. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  7. De Leone, R.: Nonlinear programming and grossone: quadratic programming and the role of constraint qualifications. Appl. Math. Comput. 318, 290–297 (2018)

  8. Fasano, G.: Conjugate gradient (CG)-type method for the solution of Newton’s equation within optimization frameworks. Optim. Methods Softw. 3–4, 267–290 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fasano, G.: Planar conjugate gradient algorithm for large-scale unconstrained optimization, part 1: theory. J. Optim. Theory Appl. 125, 523–541 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fasano, G.: Planar conjugate gradient algorithm for large-scale unconstrained optimization, part 2: application. J. Optim. Theory Appl. 125, 543–558 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fasano, G.: Lanczos-conjugate gradient method and pseudoinverse computation, on indefinite and singular systems. J. Optim. Theory Appl. 132, 267–285 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fasano, G., Pesenti, R.: Conjugate direction methods and polarity for quadratic hypersurfaces. J. Optim. Theory Appl. (2018) (in press)

  13. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  14. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newtons method. SIAM J. Numer. Anal. 23, 707–716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hager, W., Zhang, H.: The limited memory conjugate gradient method. SIAM J. Optim. 23, 2150–2168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hestenes, M.R.: Conjugate Direction Methods in Optimization. Springer, New York (1980)

    Book  MATH  Google Scholar 

  18. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, H.Y.: Unified approach to quadratically convergent algorithms for function minimization. J. Optim. Theory Appl. 5, 405–423 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Interpretation of percolation in terms of infinity computations. Appl. Math. Comput. 218(16), 8099–8111 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Infinity computations in cellular automaton forest-fire model. Commun. Nonlinear Sci. Numer. Simul. 20(3), 861–870 (2015)

    Article  Google Scholar 

  22. Lolli, G.: Infinitesimals and infinites in the history of mathematics: a brief survey. Appl. Math. Comput. 218(16), 7979–7988 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Lolli, G.: Metamathematical investigations on the theory of grossone. Appl. Math. Comput. 255, 3–14 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Luenberger, D.G.: Hyperbolic pairs in the method of conjugate gradients. SIAM J. Appl. Math. 17, 1263–1267 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  25. Margenstern, M.: Using grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers Ultrametr. Anal. Appl. 3(3), 196–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazzia, F., Sergeyev, Y.D., Iavernaro, F., Amodio, P., Mukhametzhanov, M.S.: Numerical methods for solving ODEs on the Infinity Computer. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds.) Proceedings of the 2nd International Conference on “Numerical Computations: Theory and Algorithms”, vol. 1776, p. 090033. AIP Publishing, New York (2016)

  27. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  28. Oren, S.S.: Planar quasi-Newton algorithms for unconstrained saddlepoint problems. J. Optim. Theory Appl. 43, 167–204 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rizza, D.: Supertasks and numeral systems. In: Sergeyev, Y.D., Kvasov, D.E., Dell’Accio, F., Mukhametzhanov, M.S. (eds.) Proceedings of the 2nd International Conference on “Numerical Computations: Theory and Algorithms”, vol. 1776, p. 090005. AIP Publishing, New York (2016)

  30. Seidenberg, A.: Lecture in Projective Geometry. Dover Publications Inc, Mineola (2005)

    MATH  Google Scholar 

  31. Sergeyev, Y.D.: Arithmetic of Infinity, 2nd edn. Edizioni Orizzonti Meridionali, Cosenza (2013)

    MATH  Google Scholar 

  32. Sergeyev, Y.D.: Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos Solitons Fractals 33(1), 50–75 (2007)

    Article  MathSciNet  Google Scholar 

  33. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Sergeyev, Y.D.: Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge. Chaos Solitons Fractals 42(5), 3042–3046 (2009)

    Article  Google Scholar 

  35. Sergeyev, Y.D.: Lagrange lecture: methodology of numerical computations with infinities and infinitesimals. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino 68(2), 95–113 (2010)

    MATH  Google Scholar 

  36. Sergeyev, Y.D.: Higher order numerical differentiation on the Infinity Computer. Optim. Lett. 5(4), 575–585 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sergeyev, Y.D.: Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica 22(4), 559–576 (2011b)

    MathSciNet  MATH  Google Scholar 

  38. Sergeyev, Y.D.: Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer. Appl. Math. Comput. 219(22), 10668–10681 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Sergeyev, Y.D.: Computations with grossone-based infinities. In: Calude, C.S., Dinneen, M.J. (eds.) Unconventional Computation and Natural Computation: Proceedings of the 14th International Conference UCNC 2015, vol. LNCS 9252, pp. 89–106. Springer, New York (2015)

  40. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Mat. nella Soc. nella Cult. Riv. della Unione Mat. Ital. 8(1), 111–147 (2015)

    MathSciNet  Google Scholar 

  41. Sergeyev, Y.D.: The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area. Commun. Nonlinear Sci. Numer. Simul. 31(1–3), 21–29 (2016)

    Article  MathSciNet  Google Scholar 

  42. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surveys Math. Sci. (2017) (in press)

  43. Sergeyev, Y.D., Garro, A.: Observability of turing machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Sergeyev, Y.D., Garro, A.: Single-tape and multi-tape turing machines through the lens of the grossone methodology. J. Supercomput. 65(2), 645–663 (2013)

    Article  Google Scholar 

  45. Sergeyev, Y.D., Mukhametzhanov, M.S., Mazzia, F., Iavernaro, F., Amodio, P.: Numerical methods for solving initial value problems on the Infinity Computer. Int. J. Unconv. Comput. 12(1), 3–23 (2016)

    Google Scholar 

  46. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  47. Vita, M.C., Bartolo, S.D., Fallico, C., Veltri, M.: Usage of infinitesimals in the Menger’s Sponge model of porosity. Appl. Math. Comput. 218(16), 8187–8196 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Žilinskas, A.: On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Appl. Math. Comput. 218(16), 8131–8136 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G. Fasano thanks the National Research Council-Marine Technology Research Institute (CNR-INSEAN), Italy, for the support received. The work of G. Fasano is partially supported by the Italian Flagship Project RITMARE, coordinated by the Italian National Research Council (CNR) and funded by the Italian Ministry of Education, within the National Research Program 2012–2016. The research of Ya.D. Sergeyev was supported by the Russian Science Foundation, Project No. 15-11-30022 “Global optimization, supercomputing computations, and applications”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Fasano.

Appendix

Appendix

Proof of Proposition 2.1

Recalling that \(n= P+N\), let us consider for \(\tilde{A}^{-1}\) the positive definite matrix

$$\begin{aligned} \tilde{A}^{-1} = \sum _{i=1}^{P} \frac{1}{p_{i}^{T}Ap_{i}}p_{i}p_{i}^{T} - \sum _{i=P+1}^{P+N} \frac{1}{p_{i}^{T}Ap_{i}}p_{i}p_{i}^{T}; \end{aligned}$$

then (ii)–(iii) follow from the conjugacy of the directions \(p_1, \ldots ,p_{n}\) with respect to A. Moreover, we have after a brief arrangement

$$\begin{aligned} \tilde{A}^{-1} = V \left( \begin{array}{c|c} {\displaystyle {\mathrm{diag}}_{p_{i} \in P1}} \left\{ \frac{1}{p_{i}^{T}Ap_{i}} \right\} &{} \emptyset \\ \hline \emptyset &{} - \ {\mathrm{diag}}_{p_{i} \in P2} \left\{ \frac{1}{p_{i}^{T}Ap_{i}} \right\} \end{array} \right) V^{T}, \end{aligned}$$
(6.1)

being

$$\begin{aligned} V = \left( p_1 \ \vdots \ \cdots \ \vdots \ p_{P} \ \vdots \ p_{P+1} \ \vdots \ \cdots \ \vdots \ p_{P+N} \right) \in \mathbb {R}^{n \times n} \end{aligned}$$

a nonsingular matrix. Then, by (6.1) we obtain

$$\begin{aligned} \tilde{A} = V^{-T} \left( \begin{array}{c|c} {\mathrm{diag}}_{p_{i} \in P1} \{p_{i}^{T}Ap_{i}\} &{} \emptyset \\ \hline \emptyset &{} - \ {\mathrm{diag}}_{p_{i} \in P2} \{p_{i}^{T}Ap_{i}\} \end{array} \right) V^{-1} \end{aligned}$$

hence

$$\begin{aligned} V^{T} \tilde{A} V = \left( \begin{array}{c|c} {\mathrm{diag}}_{p_{i} \in P1} \left\{ p_{i}^{T}Ap_{i} \right\} &{} \emptyset \\ \hline \emptyset &{} - \ {\mathrm{diag}}_{p_{i} \in P2} \left\{ p_{i}^{T}Ap_{i} \right\} \end{array} \right) , \end{aligned}$$
(6.2)

showing that (iv) holds. Finally, by Table 1 and the properties of the CG, let us consider the expression of the coefficients

$$\begin{aligned} \alpha _{i} = \frac{\Vert r_{i}\Vert ^2}{p_{i}^{T}Ap_{i}} = \frac{r_0^{T}p_{i}}{p_{i}^{T}Ap_{i}} = \frac{b^{T}p_{i}}{p_{i}^{T}Ap_{i}}, \qquad i \ge 1. \end{aligned}$$

Then, (6.2) implies

$$\begin{aligned} \left\{ \begin{array}{lcl} p_{i}^{T} \tilde{A} p_{i} = p_{i}^{T}Ap_{i}, &{} \qquad &{} \forall p_{i} \in P1, \\ p_{i}^{T} \tilde{A} p_{i} = -p_{i}^{T}Ap_{i}, &{} \qquad &{} \forall p_{i} \in P2. \end{array} \right. \end{aligned}$$
(6.3)

Now, to prove (v) it suffices to show that the condition \(\tilde{A} (d_{P}+d_{N})=b\) holds, i.e.

$$\begin{aligned} \tilde{A} (d_{P}+d_{N})=b \quad \Longleftrightarrow \quad \left[ b - \tilde{A} (d_{P}+d_{N}) \right] ^{T}p_{i}=0, \quad i=1, \ldots ,P+N. \end{aligned}$$

The result follows by (6.3), being either

$$\begin{aligned} \begin{array}{lcl} &{}&{} \left[ b - \tilde{A} (d_{P}+d_{N}) \right] ^{T}p_{i} = b^{T}p_{i} - \alpha _{i} p_{i}^{T} \tilde{A} p_{i} = b^{T}p_{i} \\ &{}&{} -\, \displaystyle \frac{b^{T}p_{i}}{p_{i}^{T} \tilde{A} p_{i}} p_{i}^{T} \tilde{A} p_{i} = 0, \quad \forall i=1, \ldots ,P, \end{array} \end{aligned}$$

or

$$\begin{aligned} \begin{array}{lcl} &{}&{} \left[ b - \tilde{A} (d_{P}+d_{N}) \right] ^{T}p_{i} = b^{T}p_{i} + \alpha _{i} p_{i}^{T} \tilde{A} p_{i} = b^{T}p_{i} \\ &{}&{} +\, \displaystyle \frac{b^{T}p_{i}}{-p_{i}^{T} \tilde{A} p_{i}} p_{i}^{T} \tilde{A} p_{i} = 0, \quad \forall i=P+1, \ldots ,P+N. \end{array} \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Leone, R., Fasano, G. & Sergeyev, Y.D. Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming. Comput Optim Appl 71, 73–93 (2018). https://doi.org/10.1007/s10589-017-9957-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9957-y

Keywords

Navigation