Skip to main content
Log in

PAHs in the urban air of Sarajevo: levels, sources, day/night variation, and human inhalation risk

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arruti, A., Fernández-Olmo, I., & Irabien, A. (2012). Evaluation of the urban/rural particle bound PAH and PCB levels in the northern Spain (Cantabria region). Environmental Monitoring and Assessment, 184, 6513–6526.

    Article  CAS  Google Scholar 

  • Bartoš, T., Čupr, P., Klánová, J., & Holoubek, I. (2009). Which compounds contribute most to elevated airborne exposure and corresponding health risks in the Western Balkans? Environment International, 35(7), 1066–1071.

    Article  Google Scholar 

  • Callen, M. S., de la Cruz, M. T., Lopez, J. M., Murillo, R., Navarro, M. V., & Mastral, A. M. (2008). Some influence in the mechanism of atmospheric gas/particle partitioning of polycyclic aromatic hydrocarbon (PAH) at Zaragoza (Spain). Chemosphere, 73(8), 1357–1365.

    Article  CAS  Google Scholar 

  • Dimashki, M., Lim, L. H., Harrison, R. M., & Harrad, S. (2001). Temporal trends, temperature dependence and relative reactivity of atmospheric polycyclic aromatic hydrocarbons. Environmental Science and Technology, 35, 2264–2267.

    Article  CAS  Google Scholar 

  • Dvorská, A., Lammel, G., & Klánová, J. (2011). Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment, 45, 420–427.

    Article  Google Scholar 

  • EPA (2003) Integrated risk information system. http://www.epa.gov/iris. Accessed 16 June 2010.

  • European Environment Agency (EEA 2010) http://www.eea.europa.eu/it. Accessed 16 June 2010.

  • Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmospheric Environment, 42, 8139–8149.

    Article  CAS  Google Scholar 

  • Gambaro, A., Manodori, L., Moret, I., Capodaglio, G., & Cescon, P. (2004). Transport of gas-phase polycyclic aromatic hydrocarbons to the Venice Lagoon. Environmental Science and Technology, 38, 5357–5364.

    Article  CAS  Google Scholar 

  • Gambaro, A., Manodori, L., Toscano, G., Contini, D., Donateo, A., Belosi, F., Prodi, F., & Cescon, P. (2007). PAHs and trace elements in PM2.5 at the Venice Lagoon. Annali di Chimica, 97, 343–358.

    Article  CAS  Google Scholar 

  • Hwang, H. M., Wade, T. L., & Sericano, J. L. (2003). Concentration and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico and United States. Atmospheric Environment, 37, 2259–2267.

    Article  CAS  Google Scholar 

  • IARC. (1983). Part 1, Chemical and environmental data. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man: Polycyclic Aromatic Compounds, vol. 32cbrs

  • Lewis, A. C., Kupiszewska, D., Bartle, K. D., & Pilling, M. J. (1995). City centre concentrations of polycyclic aromatic hydrocarbons using supercritical fluid extraction. Atmospheric Environment, 29, 1531–1542.

    Article  CAS  Google Scholar 

  • Mandalakis, M., & Stephanou, E. G. (2007). Atmospheric concentration characteristic and gas-particle portioning of PCBs in a rural area of eastern Germany. Environmental Pollution, 147, 211–221.

    Article  CAS  Google Scholar 

  • Manodori, L., Gambaro, A., Moret, I., Capodaglio, G., & Cescon, P. (2007). Air-sea gaseous exchange of PCBs at the Venice Lagoon (Italy). Marine Pollution Bulletin, 54(10), 1634–1644.

    Article  CAS  Google Scholar 

  • Martellini, T., Giannoni, M., Lepri, L., Katsoylannis, A., & Cincinelli, A. (2012). One year intensive PM2.5 bound polycyclic aromatic hydrocarbon monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environmental Pollution, 164, 252–258.

    Article  CAS  Google Scholar 

  • Mastral, A. M., López, J. M., & Callén, M. S. (2003). Spatial and temporal PAH concentrations in Zaragoza, Spain. The Science of the Total Environment, 307, 111–124.

    Article  CAS  Google Scholar 

  • Odabasi, M., Vardar, N., Sofuoglu, A., Tasdemir, Y., & Holsn, T. M. (1999). Polycyclic aromatic hydrocarbons (PAHs) in Chicago air. The Science of the Total Environment, 27, 57–67.

    Article  Google Scholar 

  • Piazza, R., Gambaro, A., Argiriadis, E., Vecchiato, M., Zambon, S., Cescon, P., & Barbante, C. (2013). Development of a method for simultaneous analysis of PCDDs, PCDFs, PCBs, PBDEs, PCNs and PAHs in Antarctic air. Analytical Bioanalytical Chemistry, 405(2–3), 917–932.

    Article  CAS  Google Scholar 

  • Pietrogrande, M. C., Abbaszade, G., Schnelle-Kreiss, J., Bacco, D., Mercuriali, M., & Zimmermann, R. (2011). Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg, Germany. Environmental Pollution, 159(7), 1861–1868.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieten, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 13, 2895–2921.

    Article  Google Scholar 

  • Shihua, Q., Jun, Y., Gan, Z., Jiamo, F., Guoying, S., Zhishi, W., Tong, S. M., Tang, U. W., & Yunshun, M. (2001). Distribution of polycyclic aromatic hydrocarbons in the aerosols and dustfall in Macao. Environmental Monitoring and Assessment, 72, 115–127.

    Article  CAS  Google Scholar 

  • Škarek, M., Čupr, P., Bartoš, T., Kohoutek, J., Klánová, J., & Holoubek, I. (2007). A combined approach to the evaluation of organic air pollution. A case study of urban air in Sarajevo and Tuzla (Bosnia and Herzegovina). The Science of the Total Environment, 384, 182–193.

    Article  Google Scholar 

  • Sofuoglu, A., Odabasi, M., Tasdemir, Y., Khalili, N. R., & Holsen, T. M. (2001). Temperature dependence of gas-phase polycyclic aromatic hydrocabron and organochlorine pesticide concentrations in Chicago air. Atmospheric Environment, 35, 6503–6510.

    Article  CAS  Google Scholar 

  • Subramanyam, V., Valsaraj, K. T., Tibodeaux, L. J., & Reible, D. D. (1994). Gas-to-particle portioning of polycyclic aromatic hydrocarbons in an urban atmosphere. Atmospheric Environment, 28, 3083–3091.

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • Tsapakis, M., & Stephanou, E. G. (2005). Polycyclic aromatic hydrocarbons in the atmosphere of the Eastern Mediterranean. Environmental Science and Technology, 39, 6584–6590.

    Article  CAS  Google Scholar 

  • Wania, F., Haugen, J. E., Lei, Y. D., & Mackay, D. (1998). Temperature dependence of atmospheric concentrations of semivolatile organic compounds. Environmental Science and Technology, 32, 1013–1021.

    Article  CAS  Google Scholar 

  • Weborn, MJ., Coleman, PJ., Passant, NR., Lymberidi, E., Sully, J., Weir, RA., (1999). Speciated PAH inventory for the UK. Department of the Environment, Transport and the Regions

  • Yang, H. H., Lee, W. J., Chen, S. J., & Laia, S. O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60, 159–174.

    Article  CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchelld, R. H., Goyettee, D., & Sylvestrecet, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zhang, D., An, T., Qiao, M., Loganathan, B. G., Zeng, X., Sheng, G., & Fu, J. (2011). Source identification and health risk of polycyclic aromatic hydrocarbons associated with electronic dismantling in Guiyu town, South China. Journal of Hazardous Materials, 192, 1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is a contribution to the INTERREG IIIA Project (SIMCA cod. 38) funded by the European Commission. A. Arruti would like to thank the Spanish Ministry of Education and Science for the internship period grant (BES-2007-14915, project reference CTM-2006-00317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gambaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Pieri, S., Arruti, A., Huremovic, J. et al. PAHs in the urban air of Sarajevo: levels, sources, day/night variation, and human inhalation risk. Environ Monit Assess 186, 1409–1419 (2014). https://doi.org/10.1007/s10661-013-3463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3463-1

Keywords

Navigation