Skip to main content

Advertisement

Log in

Review of decision analytic tools for sustainable nanotechnology

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

Nanotechnology innovation is hampered by data gaps and knowledge limitations in evaluating the risks and impacts of nano-enabled products. “Sustainable nanotechnology” is a growing concept in the literature, which calls for a comprehensive evaluation of the risks and impacts of nanotechnology at an early stage of nano-enabled product life cycle. ‘One such method to frame sustainable nanotechnology is the triple bottom line (TBL) approach, which comprises the environmental, economic, and societal “pillars” that contribute to the overall sustainability of a nano-enabled product. For the context of nanotechnology, risk analysis (RA), life cycle assessment (LCA), and multi-criteria decision analysis (MCDA) are frequently called upon to support sustainable nanotechnology governance. This paper provides a systematic review of these tools in the context of sustainable nanotechnology. The results indicate a growing number of applications for these tools with LCA contributing to the environmental and economic pillars, and RA contributing to the environmental pillar. MCDA provides the structural scaffold and mathematical techniques necessary to integrate RA and LCA within the TBL, and also provides the means to address uncertainty of early-stage nanotechnology assessment. Using these tools, integrated sustainability assessment could provide a viable means for industry and regulators to make near-term decisions about complex nanotechnology problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrae AS, Andersen O (2011) Life cycle assessment of integrated circuit packaging technologies. Int J Life Cycle Assess 16:258–267

    Article  CAS  Google Scholar 

  • Arvidsson R, Kushnir D, Sandén BA, Molander S (2014) Prospective life cycle assessment of graphene production by ultrasonication and chemical reduction. Environ Sci Technol 48:4529–4536

    Article  CAS  Google Scholar 

  • Azadnia AH, Saman MZM, Wong KY (2015) Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process. Int J Prod Res 53:383–408

    Article  Google Scholar 

  • Bare JC (2002) Traci: the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6:49–78

    Article  Google Scholar 

  • Bauer C, Buchgeister J, Hischier R, Poganietz WR, Schebek L et al (2008) Towards a framework for life cycle thinking in the assessment of nanotechnology. J Clean Prod 16:910–926

    Article  Google Scholar 

  • Benoit C (Ed.) (2009) Guidelines for social life cycle assessment of products. UNEP/Earthprint

  • Bergeson LL (2013) Sustainable nanomaterials: emerging governance systems. ACS Sustain Chem Eng 1:724–730

    CAS  Google Scholar 

  • Bonton A, Bouchard C, Barbeau B, Jedrzejak S (2012) Comparative life cycle assessment of water treatment plants. Desalination 284:42–54

    Article  CAS  Google Scholar 

  • Bouillard JX, Vignes A (2014) Nano-Evaluris: an inhalation and explosion risk evaluation method for nanoparticle use. Part I: description of the methodology. J Nanopart Res 16:1–29

    CAS  Google Scholar 

  • Boukherroub T, Ruiz A, Guinet A, Fondrevelle J (2015) An integrated approach for sustainable supply chain planning. Comput Oper Res 54:180–194

    Article  Google Scholar 

  • Caliskan H (2013) Selection of boron based tribological hard coatings using multi-criteria decision making methods. Mater Des 50:742–749

    Article  CAS  Google Scholar 

  • Canis L, Linkov I, Seager TP (2010) Application of stochastic multiattribute analysis to assessment of single walled carbon nanotube synthesis processes. Environ Sci Technol 44:8704–8711

    Article  CAS  Google Scholar 

  • Chen YW, Larbani M (2006) Two-person zero-sum game approach for fuzzy multiple attribute decision making problems. Fuzzy Sets Syst 157:34–51

    Article  Google Scholar 

  • Chiueh P-T, Y-H LEE, C-Y SU, S-L LO (2011) Assessing the environmental impact of five Pd-based catalytic technologies in removing of nitrates. J Hazard Mater 192:837–845

    Article  CAS  Google Scholar 

  • Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol Ind 46:138–148

    Article  Google Scholar 

  • Cornelissen R, Jongeneelen F, Van Broekhuizen F (2011) Guidance working safely with nanomaterials and products, the guide for employers and employees. The Netherlands, Amsterdam

    Google Scholar 

  • Cunningham SW, Van Der Lei TE (2009) Decision-making for new technology: a multi-actor, multi-objective method. Technol Forecast Soc Chang 76:26–38

    Article  Google Scholar 

  • Dabaghian MR, Hashemi SH, Ebadi T, Maknoon R (2008) The best available technology for small electroplating plants applying analytical hierarchy process. Int J Environ Sci Technol 5:479–484

    Article  Google Scholar 

  • de Figueirêdo MCB, Rosa MDF, Ugaya CML, Souza Filho MDSMD, Braid ACCDS et al (2012) Life cycle assessment of cellulose nanowhiskers. J Clean Prod 35:130–139

    Article  Google Scholar 

  • Dhingra R, Naidu S, Upreti G, Sawhney R (2010) Sustainable Nanotechnology: through green methods and life-cycle thinking. Sustainability 2:3323–3338

    Article  Google Scholar 

  • Devika K, Jafarian A, Nourbakhsh V (2014) Designing a sustainable closed-loop supply chain network based on triple bottom line approach: a comparison of metaheuristics hybridization techniques. Eur J Oper Res 235:594–615

    Article  Google Scholar 

  • Dobon A, Cordero P, Kreft F, Østergaard S, Robertsson M et al (2011a) The sustainability of communicative packaging concepts in the food supply chain. A case study: part 1. Life cycle assessment. Int J Life Cycle Assess 16:168–177

    Article  CAS  Google Scholar 

  • Dobon A, Cordero P, Kreft F, Østergaard SR, Antvorskov H et al (2011b) The sustainability of communicative packaging concepts in the food supply chain. A case study: part 2. Life cycle costing and sustainability assessment. Int J Life Cycle Assess 16:537–547

    Article  CAS  Google Scholar 

  • Elkington J (1997) Cannibals with forks: the triple bottom line of twenty-first century business. Capstone, Oxford

    Google Scholar 

  • Esawi AMK, Farag MM (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Des 28:2394–2401

    Article  CAS  Google Scholar 

  • Fadel TR, Steevens JA, Thomas TA, Linkov I (2014) The challenges of nanotechnology risk management. Nano Today. doi:10.1016/j.nantod.2014.09.008

    Google Scholar 

  • Flari V, Chaudhry Q, Neslo R, Cooke R (2011) Expert judgment based multi-criteria decision model to address uncertainties in risk assessment of nanotechnology-enabled food products. J Nanopart Res 13:1813–1831

    Article  CAS  Google Scholar 

  • Fthenakis V, Kim HC, Gualtero S, Bourtsalas A (2009) Nanomaterials in PV manufacture: some life cycle environmental- and health-considerations. 34th IEEE Photovoltaic Specialists Conference, Philadelphia, USA, pp. 2003–2008

  • Gavankar S, Suh S, Keller AF (2012) Life cycle assessment at nanoscale: review and recommendations. Int J Life Cycle Assess 17:295–303

    Article  Google Scholar 

  • Gazquez-Abad JC, Huertas-Garcia R, Vazquez-Gomez MD, Romeo AC (2015) Drivers of sustainability strategies in Spain’s Wine Tourism Industry. Cornel Hosp Q 56:106–117

    Article  Google Scholar 

  • Ghazinoory S, Daneshmand-Mehr M, Azadegan A (2013) Technology selection: application of the PROMETHEE in determining preferences-a real case of nanotechnology in Iran. J Oper Res Soc 64:884–897

    Article  Google Scholar 

  • Goedkoop M, Spriensma R (1999) The eco-indicator 99, methodology report. A damage oriented LCIA method. VROM, The Hague

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts MAJ, de Schryver A, Struijs J, van Zelm R (2012) ReCiPe 2008—A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) / Report I: Characterisation. VROM—Ministery of Housing Spatial Planning and Environment, Den Haag (the Netherlands)

  • Govindan K, Azevedo SG, Carvalho H, Cruz-Machado V (2014) Impact of supply chain management practices on sustainability. J Clean Prod 85:212–225

    Article  Google Scholar 

  • Grieger KD, Linkov I, Hansen SF, Baun A (2012) Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicology 6:196–212

    Article  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, ISBN 1-4020-0228-9, Dordrecht, 692 p

  • Hancock NT, Black ND, Cath TY (2012) A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Water Res 46:1145–1154

    Article  CAS  Google Scholar 

  • Hansen S (2009) Regulation and risk assessment of nanomaterials—too little, too late?. Technical University of Denmark, Denmark

    Google Scholar 

  • Hellweg S, Demou E, Bruzzi R, Meijer A, Rosenbaum RK et al (2009) Integrating human indoor air pollutant exposure within life cycle impact assessment. Environ Sci Technol 43:1670–1679

    Article  CAS  Google Scholar 

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271–282

    Article  CAS  Google Scholar 

  • Höck J, Epprecht T, Hofmann H, Höhener K, Krug H et al (2008) Guidelines on the precautionary matrix for synthetic nanomaterials. Federal Office for Public Health and Federal Office for the Environment, Bern

    Google Scholar 

  • Hristozov D, Gottardo S, Critto A, Marcomini A (2012) Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective. Nanotoxicology 6:880–898

    Article  CAS  Google Scholar 

  • Hristozov DR, Zabeo A, Foran C, Isigonis P, Critto A et al (2014) A weight of evidence approach for hazard screening of engineered nanomaterials. Nanotoxicology 8:72–87

    Article  CAS  Google Scholar 

  • Hsu L-C, Ou S-L, Ou Y-C (2015) A comprehensive performance evaluation and ranking methodology under a sustainable development perspective. J Bus Econ Manag 16:74–92

    Article  Google Scholar 

  • Hull M, Kennedy AJ, Detzel C, Vikesland P, Chappell MA (2012) Moving beyond mass: the unmet need to consider dose metrics in environmental nanotoxicology studies. Environ Sci Technol 46:10881–10882

    Article  CAS  Google Scholar 

  • Institution of Chemical Engineers (ICE) Sustainable Development Working Group (2003) Sustainable development progress metrics. The Institution of Chemical Engineers, Rugby

    Google Scholar 

  • Jansujwicz JS, Johnson TR (2015) The Maine Tidal Power Initiative: transdisciplinary sustainability science research for the responsible development of tidal power. Sustain Sci 10:75–86

    Article  Google Scholar 

  • Jensen KA, Saber AT, Kristensen HV, Koponen IK, Liguori B et al (2013) NanoSafer vs. 1.1—Nanomaterial risk assessment using first order modeling. 6th International Symposium on Nanotechnology, Occupational and Environmental Health: 120

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J et al (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • Keisler JM, Collier ZA, Chu E, Sinatra N, Linkov I (2014) Value of information analysis: the state of application. Environ Syst Decis 34:3–23

    Article  Google Scholar 

  • Kim HC, Fthenakis V, Gualtero S, Van Der Meulen R, Kim H (2007) Comparative life-cycle analysis of photovoltaics based on nano-materials: a proposed framework. In: Fthenakis V, Dillon A, Savage N (eds) MRS proceedings, vol 1041. Cambridge University Press, pp R1001–R1004

  • Kumaraguru S, Rachuri S, Lechevalier D (2014) Faceted classification of manufacturing processes for sustainability performance evaluation. Int J Adv Manuf Technol 75:1309–1320

    Article  Google Scholar 

  • Kurdve M, Zackrisson M, Wiktorsson M, Harlin U (2014) Lean and green integration into production system models—experiences from Swedish industry. J Clean Prod 85:180–190

    Article  Google Scholar 

  • Kuzma J, Paradise J, Ramachandran G, Kim JA, Kokotovich A et al (2008) An integrated approach to oversight assessment for emerging technologies. Risk Anal 28:1197–1219

    Article  Google Scholar 

  • LICARA Website. http://www.licara.eu/. Accessed on 25 November 2014

  • Linkov I, Seager TP (2011) Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats. Environ Sci Technol 45:5068–5074

    Article  CAS  Google Scholar 

  • Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM (2011) A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nanotechnol 6:784–787

    Article  CAS  Google Scholar 

  • Malsch I, Subramanian V, Semenzin E, Hristozov D, Marcomini A (2015) Supporting decision making for sustainable nanotechnology. Environ Syst Decis. doi:10.1007/s10669-015-9539-4

    Google Scholar 

  • Meyer DE, Curran MA, Gonzalez MA (2011) An examination of silver nanoparticles in socks using screening-level life cycle assessment. J Nanopart Res 13:147–156

    Article  CAS  Google Scholar 

  • Mohan M, Trump BD, Bates ME, Monica JC, Linkov I (2012) Integrating legal liabilities in nanomanufacturing risk management. Environ Sci Technol 46:7955–7962

    Article  CAS  Google Scholar 

  • Mohr NJ, Meijer A, Huijbregts MAJ, Reijnders L (2013) Environmental life cycle assessment of roof-integrated flexible amorphous silicon/nanocrystalline silicon solar cell laminate. Prog Photovolt Res Appl 21:802–815

    CAS  Google Scholar 

  • Money ES, Reckhow KH, Wiesner MR (2012) The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation. Sci Total Environ 426:436–445

    Article  CAS  Google Scholar 

  • Money ES, Barton LE, Dawson J, Reckhow KH, Wiesner MR (2014) Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver. Sci Total Environ 473–474:685–691

    Article  Google Scholar 

  • Mulvihill MJ, Beach ES, Zimmerman JB, Anastas PT (2011) Green chemistry and green engineering: a framework for sustainable technology development. Annu Rev Environ Resour 36:271–293

    Article  Google Scholar 

  • Naidu S, Sawhney R, Li XP (2008) A methodology for evaluation and selection of nanoparticle manufacturing processes based on sustainability metrics. Environ Sci Technol 42:6697–6702

    Article  CAS  Google Scholar 

  • National Research Council (1983) Risk assessment in a Federal Government: managing the process. The National Academic Press, Washington

    Google Scholar 

  • National Research Council (2011) Sustainability and the US EPA. The National Academies Press, Washington

    Google Scholar 

  • O’brien NJ, Cummins EJ (2011) A risk assessment framework for assessing metallic nanomaterials of environmental concern: aquatic exposure and behavior. Risk Anal 31:706–726

    Article  Google Scholar 

  • Osterwalder N, Capello C, Hungerbühler K, Stark WJ (2006) Energy consumption during nanoparticle production: how economic is dry synthesis? J Nanopart Res 8:1–9

    Article  CAS  Google Scholar 

  • Ostiguy C, Riediker M, Triolet J, Troisfontaines P, Vernez D (2010) Development of a specific control banding tool for nanomaterials. Expert committee (CES) on physical agents. French Agency for Food, Environmental, and Occupational Health and Safety, Maisons-Alfort Cedex

  • Paik SY, Zalk DM, Swuste P (2008) Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg 52:419–428

    Article  CAS  Google Scholar 

  • Parlak A, Lambert JH, Guterbock T, Clements J (2012) Population behavioral scenarios influencing radiological disaster preparedness and planning. Accid Anal Prev 48:353–362

    Article  Google Scholar 

  • Popescu VA, Popescu GN, Popescu CR (2015) Competitiveness and sustainability—a modern economic approach to the industrial policy. Metalurgija 54:426–428

    Google Scholar 

  • Porzio GF, Nastasi G, Colla V, Vannucci M, Branca TA (2014) Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork. Appl Energy 136:1085–1097

    Article  CAS  Google Scholar 

  • Powers CM, Dana G, Gillespie P, Gwinn MR, Hendren CO, Long TC, Wang A, Davis JM (2012) Comprehensive environmental assessment: a meta-assessment approach. Environ Sci Technol 46:9202–9208

    Article  CAS  Google Scholar 

  • Raza SS, Janajreh I, Ghenai C (2014) Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source. Appl Energy 136:909–920

    Article  Google Scholar 

  • Ren D, Colosi LM, Smith JA (2013) Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment. Environ Sci Technol 47:11206–11213

    Article  CAS  Google Scholar 

  • Robichaud CO, Tanzil D, Weilenmann U, Wiesner MR (2005) Relative risk analysis of several manufactured nanomaterials: an insurance industry context. Environ Sci Technol 39:8985–8994

    Article  CAS  Google Scholar 

  • Roes A, Marsili E, Nieuwlaar E, Patel M (2007) Environmental and cost assessment of a polypropylene nanocomposite. J Polym Environ 15:212–226

    Article  CAS  Google Scholar 

  • Roes AL, Tabak LB, Shen L, Nieuwlaar E, Patel MK (2010) Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites. J Nanopart Res 12:2011–2028

    Article  CAS  Google Scholar 

  • Rosenbaum R, Bachmann T, Gold L, Huijbregts MJ, Jolliet O et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546

    Article  CAS  Google Scholar 

  • Santoyo-Castelazo E, Azapagic A (2014) Sustainability assessment of energy systems: integrating environmental, economic and social aspects. J Clean Prod 80:119–138

    Article  Google Scholar 

  • Schulte PA, Mckernan LT, Heidel DS, Okun AH, Dotson GS et al (2013) Occupational safety and health, green chemistry, and sustainability: a review of areas of convergence. Environ Health 8:9

    Google Scholar 

  • Şengül H, Theis TL (2011) An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. J Clean Prod 19:21–31

    Article  Google Scholar 

  • Shatkin JA (2012) Nanotechnology: health and environmental risks. CRC Press, Boca Raton

    Google Scholar 

  • Sørensen PB, Giralt F, Rallo R, Espinosa G, Münier B et al (2010) Conscious worst case definition for risk assessment, part II: a methodological case study for pesticide risk assessment. Sci Total Environ 408:3860–3870

    Article  Google Scholar 

  • Steinfeldt M, Petschow U, Haum R, Von Gleich A (2004) Nanotechnology and sustainability: prospective assessment of a future key technology. Institute for Ecological Economy Research, Berlin

    Google Scholar 

  • Subramanian V, Semenzin E, Hristozov D, Marcomini A, Linkov I (2014) Sustainable nanotechnology: defining, measuring and teaching. Nano Today 9:6–9

    Article  CAS  Google Scholar 

  • Sudhakaran S, Lattemann S, Amy GL (2013) Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies—a multi-criteria analysis study. Sci Total Environ 442:478–488

    Article  CAS  Google Scholar 

  • Teng K, Thekdi SA, Lambert JH (2012) Identification and evaluation of priorities in the business process of a risk or safety organization. Reliab Eng Syst Saf 99:74–86

    Article  Google Scholar 

  • Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M et al (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766

    Article  CAS  Google Scholar 

  • Tsang MP, Bates ME, Madison M, Linkov I (2014) Benefits and risks of emerging technologies: integrating life cycle assessment and decision analysis to assess lumber treatment alternatives. Environ Sci Technol 48:11543–11550

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (2005). Life cycle approaches: the road form analysis to practice, http://www.unep.fr/shared/publications/pdf/DTIx0594xPA-Road.pdf

  • van der Meulen R, Alsema E (2011) Life-cycle greenhouse gas effects of introducing nano-crystalline materials in thin-film silicon solar cells. Prog Photovolt Res Appl 19:453–463

    Article  Google Scholar 

  • van Duuren-Stuurman B, Vink SR, Verbist KJ, Heussen HG, Brouwer DH, et al (2012) Stoffenmanager nano version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Annals of occupational hygiene: mer113

  • Velmurugan R, Selvamuthukumar S, Manavalan R (2011) Multi criteria decision making to select the suitable method for the preparation of nanoparticles using an analytical hierarchy process. Pharmazie 66:836–842

    CAS  Google Scholar 

  • Web of Science website. http://www.webofscience.com/ Accessed on 25 August 2014

  • Wu W, Issa R (2015) BIM execution planning in green building projects: LEED as a use case. J Manage Eng 31. Special Issue: Information and Communication Technology (ICT) in AEC Organizations: Assessment of Impact on Work Practices, Project Delivery, and Organizational Behavior, A4014007

  • You H, Connelly EB, Lambert JH, Clarens AF (2014) Climate and other scenarios disrupt priorities in several management perspectives. J Environ Syst Decis 34:540–554

    Article  Google Scholar 

  • Yu P, Lee JH (2013) A hybrid approach using two-level SOM and combined AHP rating and AHP/DEA-AR method for selecting optimal promising emerging technology. Expert Syst Appl 40:300–314

    Article  Google Scholar 

  • Zalk DM, Paik SY, Swuste P (2009) Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res 11:1685–1704

    Article  CAS  Google Scholar 

  • Zhang X, Shen J, Xu P, Zhao X, Xu Y (2014) Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions. Appl Energy 135:20–34

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded in part by the European Union Seventh Framework Programme [FP7/2007-2013] under EC-GA No. 604305 “SUN.” This publication reflects the views only of the authors, and the European Commission and other sponsors cannot be held responsible for any use, which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marcomini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, V., Semenzin, E., Hristozov, D. et al. Review of decision analytic tools for sustainable nanotechnology. Environ Syst Decis 35, 29–41 (2015). https://doi.org/10.1007/s10669-015-9541-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-015-9541-x

Keywords

Navigation