Skip to main content
Log in

Convexity of Multi-valued Momentum Maps

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A famous theorem of Atiyah, Guillemin and Sternberg states that, given a Hamiltonian torus action, the image of the momentum map is a convex polytope. We prove that this result can be extended to the case in which the action is non-Hamiltonian. Our generalization of the theorem states that, given a symplectic torus action, the momentum map can be defined on an appropriate covering of the manifold and its image is the product of a convex polytope along a rational subspace times the orthogonal vector space. We also prove that this decomposition in direct product is stable under small equivariant perturbations of the symplectic structure; this, in particular, means that the property of being Hamiltonian is locally stable. The technique developed allows us to extend the result to any compact group action and also to deduce that any symplectic n-torus action, with fixed points, on a compact 2n-dimensional manifold, is Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V. I.: Mathematical Methods of Classical Mechanics, Grad. Text in Math. 60, Springer-Verlag, New York, 1974.

  2. M. F. Atiyah (1982) ArticleTitleConvexity and commuting Hamiltonians Bull. London Math. Soc. 14 1–15

    Google Scholar 

  3. Audin M.: The Topology of Torus Actions on Symplectic Manifolds, Progr. Math. 93, Birkhäuser, Boston, (1991).

  4. Y. Benoist (1998) ArticleTitleActions symplectiques de groupes compacts C.R. Acad. Sci. 327 373–376

    Google Scholar 

  5. Y. Benoist (2002) ArticleTitleActions symplectiques de groupes compacts Geom. Dedicata 89 181–245 Occurrence Handle10.1023/A:1014253511289

    Article  Google Scholar 

  6. R. Bott (1954) ArticleTitleNon degenerate critical manifolds Ann. Math. 60 248–261

    Google Scholar 

  7. Bröcker T. and Dieck T.: Representation of Compact Lie Groups, Grad. Texts in Math, 98, Springer-Verlag, New York, 1985.

  8. Fulton W. and Harris J.: Representation Theory. Grad. Texts Math. 129, Springer-Verlag, New York, (1991)

  9. A. Giacobbe (2000) ArticleTitleConvexity and multi-valued Hamiltonians Russian Math. Surveys 55 578–580 Occurrence Handle10.1070/rm2000v055n03ABEH000300

    Article  Google Scholar 

  10. V. Guillemin S. Sternberg (1984) Symplectic Techniques in Physics Cambridge University Press Cambridge, MA

    Google Scholar 

  11. V. Guillemin S. Sternberg (1982) ArticleTitleConvexity properties of the moment mapping Invent. Math. 67 491–513 Occurrence Handle10.1007/BF01398933

    Article  Google Scholar 

  12. V. Guillemin S. Sternberg (1984) ArticleTitleConvexity properties of the moment mapping. II Invent. Math. 77 533–546 Occurrence Handle10.1007/BF01388837

    Article  Google Scholar 

  13. F. Kirwan (1984) ArticleTitleConvexity properties of the moment mapping, III Invent. Math. 77 547–552 Occurrence Handle10.1007/BF01388838

    Article  Google Scholar 

  14. S. Lang (1965) Algebra Addison-Wesley Cambridge, Mass

    Google Scholar 

  15. J. Milnor (1963) Morse Theory Princeton University Press Princeton, NJ

    Google Scholar 

  16. S. P. Novikov (1982) ArticleTitleThe Hamiltonian formalism and a multivalued analogue of Morse theory Russian Math. Surveys 37 1–56

    Google Scholar 

  17. E. H. Spanier (1966) Algebraic Topology Springer-Verlag New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacobbe, A. Convexity of Multi-valued Momentum Maps. Geom Dedicata 111, 1–22 (2005). https://doi.org/10.1007/s10711-004-1620-y

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-004-1620-y

Mathematics Subject Classifications (2000)

Keywords

Navigation