Skip to main content
Log in

Phycoerythrin productivity and diversity from five red macroalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Five red algae, Agardhiella subulata, Gracilariopsis longissima, Gracilaria vermiculophylla, Polysiphonia morrowii, and Pyropia elongata were sampled in winter for the extraction of phycoerythrin. The extracted phycoerythrin molecules were compared with the commercial phycoerythrin to determine the intrinsic fluorescence characteristics of the single pigments. An improved selective method for phycoerythrin extraction was set up for routinary investigation. The use of the mortar and pestle method for tissue homogenization with a freeze-thawing cycle allowed a simple and complete homogenization of the red algae. The extraction of phycoerythrin with diluted EDTA solutions (1 mM) at pH 9 enabled a selective and easy extraction of the pigment with 95–98% extraction efficiency. The way pH affected the phycoerythrin, phycocyanin, and allophycocyanin selective extraction was also evaluated. The 3D fingerprint of each pigment was recorded, and a comparison of different phycoerythrin spectra was performed by fluorescence spectroscopy highlighting differences in A. subulata and P. morrowii phycoerythrins in comparison with commercial standards purified from Pyropia. The productivity and the advantages of phycoerythrin that was extracted from unattached red algal species are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Algarra P, Thomas JC, Mousseau A (1990) Phycobilisome heterogeneity in the red alga Porphyra umbilicalis. Plant Physiol 92:570–576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792

    Article  CAS  Google Scholar 

  • Bermejo R, Acién FG, Ibanez MJ, Fernandez JM, Molina E, Alvarez-Pez JM (2003) Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J Chromatogr B 790:317–325

    Article  CAS  Google Scholar 

  • Benavides J, Palomares MR (2006) Simplified two-stage method to B-phycoerythrin recovery from Porphyridium cruentum. J Chromatogr B 844:39–44

    Article  CAS  Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. Microbiology 128:835–844

    Article  CAS  Google Scholar 

  • Cai C, Wang Y, Li C, Guo Z, Jia R, WU W, Hu Y, He P (2014) Purification and photodynamic bioactivity of phycoerythrin and phycocyanin from Porphyra yezoensis Ueda. J Ocean Univ China 12:479–484

    Article  CAS  Google Scholar 

  • Chang WR, Jiang T, Wan ZL, Zhang JP, Yang ZX, Liang DC (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Å resolution. J Mol Biol 262:721–731

    Article  PubMed  CAS  Google Scholar 

  • Dumay J, Clément N, Morançais M, Fleurence J (2013) Optimization of hydrolysis conditions of Palmaria palmata to enhance R-phycoerythrin extraction. Bioresour Technol 131:21–27

    Article  PubMed  CAS  Google Scholar 

  • Edding M, Macchiavello J, Black H (1987) Culture of Gracilaria sp. in outdoor tanks: productivity. Hydrobiologia 151/152:369–373

    Article  Google Scholar 

  • European Patent Office (2017) Espacenet patent search engine. https://worldwide.espacenet.com; searched on 17 May 2017

  • Francavilla M, Franchi M, Monteleone M, Caroppo C (2013) The red seaweed Gracilaria gracilis as a multi products source. Mar Drugs 11:3754–3776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glazer AN, Fang S (1973) Chromophore content of blue-green algal phycobiliproteins. J Biol Chem 248:659–662

    PubMed  CAS  Google Scholar 

  • Glazer AN, Hixson CS (1975) Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. J Biol Chem 250:5487–5495

    PubMed  CAS  Google Scholar 

  • González-Ramírez E, Andújar-Sánchez M, Ortiz-Salmerón E, Bacarizo J, Cuadri C, Mazzuca-Sobczuk T, Ibáñez MJ, Cámara-Artigas A, Martínez-Rodríguez S (2014) Thermal and pH stability of the B-phycoerythrin from the red algae Porphyridium cruentum. Food Biophys 9:184–192

    Article  Google Scholar 

  • Huang YM, Rorrer GL (2002) Dynamics of oxygen evolution and biomass production during cultivation of Agardhiella subulata microplantlets in a bubble-column photobioreactor under medium perfusion. Biotechnol Prog 18:62–71

    Article  PubMed  CAS  Google Scholar 

  • Hugh DJM (2003) A guide to seaweed industry. FAO Fisheries Technical Paper 441, Rome

  • Ismail MM, Osman MEH (2016) Seasonal fluctuation of photosynthetic pigments of most common red seaweeds species collected from Abu Qir, Alexandria, Egypt. Rev Biol Mar Oceanogr 51:515–525

    Article  Google Scholar 

  • Kao O, Berns DS, Maccoll R (1971) C-Phycocyanin monomer molecular weight. Eur J Biochem 19:595–599

    Article  PubMed  CAS  Google Scholar 

  • Kawsar S, Fujii Y, Matsumoto R, Yasumitsu H, Ozeki Y (2011) Protein R-phycoerythrin from marine red alga Amphiroa anceps: extraction, purification and characterization. Phytol Balcan 17(3):347–354

    Google Scholar 

  • Lauceri R, Bresciani M, Lami A, Morabito G (2017) Chlorophyll a interference in phycocyanin and allophycocyanin spectrophotometric quantification. J Limnol. https://doi.org/10.4081/jlimnol.2017.1691

  • Ley AC, Butler WL (1977) Isolation and function of allophycocyanin B of Porphyridium cruentum. Plant Physiol 59:974–980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu LN, Chen XL, Zhang XY, Zhang YZ, Zhou BC (2005) One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J Biotechnol 116:91–100

    Article  PubMed  CAS  Google Scholar 

  • Liu LN, Su HN, Yan SG, Shao SM, Xie BB, Chen XL, Zhang XY, Zhou BC, Zhang YZ (2009) Probing the pH sensitivity of R-phycoerythrin: investigations of active conformational and functional variation. Biochim Biophys Acta Bioenerg 1787:939–946

    Article  CAS  Google Scholar 

  • Mclachlan J, Bird CJ (1986) Gracilaria (Gigartinales, Rhodophyta) and productivity. Aquat Bot 26:27–49

    Article  Google Scholar 

  • Menges F (2016) Spekwin32—optical spectroscopy software, Version 1.72.0. http://www.effemm2.de/spekwin/; searched on 11 August 2016

  • Mensi F, Ksouri J, Seale E, Romdhane MS, Fleurence J (2012) A statistical approach for optimization of R-phycoerythrin extraction from the red algae Gracilaria verrucosa by enzymatic hydrolysis using central composite design and desirability function. J Appl Phycol 24:915–926

    Article  CAS  Google Scholar 

  • Moraes CC, Kalil SJ (2009) Strategy for a protein purification design using C-phycocyanin extract. Bioresour Technol 100:5312–5317

    Article  PubMed  CAS  Google Scholar 

  • Moreth CM, Yentsch CS (1970) A sensitive method for the determination of open ocean phytoplankton phycoerythrin pigments by fluorescence. Limnol Oceanogr 15:313–317

    Article  CAS  Google Scholar 

  • Munier M, Jubeau S, Wijaya A, Morançais M, Dumay J, Marchal L, Jaouen P, Fleurence J (2014) Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. J Food Chem 150:400–407

    Article  CAS  Google Scholar 

  • Nguyen HPT, Morançais M, Fleurence J, Dumay J (2017) Mastocarpus stellatus as a source of R-phycoerythrin: optimization of enzyme assisted extraction using response surface methodology. J Appl Phycol 29:1563–1570

    Article  CAS  Google Scholar 

  • Niu JF, Wang GC, Tseng CK (2006) Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expr Purif 46:23–31

    Article  CAS  Google Scholar 

  • Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analysis of cells and molecules. J Cell Biol 93:981–986

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H, Haruo M, Takahide S, Yoshihiro Y, Tuyosi O, Naomichi I (1991) Effects of pH on the conformation of phycoerythrin from nori Porphyra sp. Nippon Suisan Gakk 57:899–903

    Article  CAS  Google Scholar 

  • Pan Q, Chen M, Li J, Wu Y, Zhen C, Liang B (2013) Antitumor function and mechanism of phycoerythrin from Porphyra haitanensis. Biol Res 46:87–95

    Article  PubMed  CAS  Google Scholar 

  • Ramirez AO, Merrill JE, Smith DM (2000) pH affects the thermal inactivation parameters of R-phycoerythrin from Porphyra yezoensis. J Food Sci 65:1046–1050

    Article  Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, Melbourne

    Google Scholar 

  • Sasim SM, Egiert JS, Kosakowska A (2014) Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. J Appl Phycol 26:2065–2074

    Article  CAS  Google Scholar 

  • Sfriso AA, Gallo M, Baldi F (2016a) Carbohydrate and agar yield: preliminary insights on seasonal variations in Ulva and three Gracilariaceae. Biol Mar Mediterr 23:162–166

    Google Scholar 

  • Sfriso AA, Gallo M, Baldi F (2017a) Seasonal variation and yield of sulfated polysaccharides in seaweeds from the Venice Lagoon. Bot Mar 60:339–349

    CAS  Google Scholar 

  • Sfriso AA, Sfriso A (2017) In situ biomass production of Gracilariaceae and Ulva rigida: the Venice Lagoon as a study case. Bot Mar 60:271–283

    Google Scholar 

  • Sfriso A, Buosi A, Facca C, Sfriso AA (2017b) Role of environmental factors in affecting macrophyte dominance in transitional environments: the Italian Lagoons as a study case. Mar Ecol 38(2):e12414. https://doi.org/10.1111/maec.12414

    Article  CAS  Google Scholar 

  • Sfriso A, Facca C, Bon D, Buosi A (2016b) Macrophytes and ecological status assessment in the Po delta transitional systems, Adriatic Sea (Italy). Application of Macrophyte Quality Index (MaQI). Acta Adriat 57(2):209–226

    Google Scholar 

  • Sfriso A, Marcomini A, Pavoni B (1994a) Gracilaria distribution, production and composition in the lagoon of Venice. Bioresour Technol 50:165–173

    Article  CAS  Google Scholar 

  • Sfriso A, Marcomini A, Pavoni B (1994b) Distribution, production and composition of Gracilaria in the central lagoon of Venice. COST-48 Symposium of Sub Group III, Trieste, pp 1–17

  • Soltzberg LJ, Lor S, Okey-Igwe N, Newman R (2012) 3D fluorescence characterization of synthetic organic dyes. Am J Anal Chem 3:622–631

    Article  CAS  Google Scholar 

  • Sonania RR, Singhb NK, Kumarc J, Thakara D, Madamwara D (2014) Concurrent purification and antioxidant activity of phycobiliproteins from Lyngbya sp. A09DM: an antioxidant and anti-aging potential of phycoerythrin in Caenorhabditis elegans. Process Biochem 49:1757–1766

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Toffanin R, Cecere E, Rizzo R, Knutsen SH (1997) Investigation of the carrageenans extracted from Solieria filiformis and Agardhiella subulata from Mar Piccolo, Taranto. Mar Chem 58:319–325

    Article  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2006) Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res 40:291–302

    Article  PubMed  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2005) Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste. Process Biochem 40:3267–3275

    Article  CAS  Google Scholar 

  • Viskari PJ, Colyer CL (2003) Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 319:263–271

    Article  PubMed  CAS  Google Scholar 

  • Zimba PV (2012) An improved phycobilin extraction method. Harmful Algae 17:35–39

    Article  CAS  Google Scholar 

  • Zhongzheng P, Baicheng Z, Chengkui Z, Tseng CK (1987) The effect of pH on both spectral types of R-phycoerythrin. Chin J Oceanol Limnol 5(1):73–79

    Article  Google Scholar 

  • Wang L, Qu Y, Fu X, Zhao M, Wang S, Sun L (2014) Isolation, purification and properties of an R-phycocyanin from the phycobilisomes of a marine red macroalga Polysiphonia urceolata. PLoS One 9(2):e87833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Wang S, Fu X, Sun L (2015) Characteristics of an R-Phycoerythrin with two γ subunits prepared from red macroalga Polysiphonia urceolata. PLoS One 10(3):e0120333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiley PS, Neefus CD (2007) An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta). J Appl Phycol 19:123–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Orietta Zucchetta for the English editing and to Prof. Adriano Sfriso for his taxonomical expertise and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Augusto Sfriso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sfriso, A.A., Gallo, M. & Baldi, F. Phycoerythrin productivity and diversity from five red macroalgae. J Appl Phycol 30, 2523–2531 (2018). https://doi.org/10.1007/s10811-018-1440-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1440-3

Keywords

Navigation