Skip to main content
Log in

Chitosan-Polyoxometalate Nanocomposites: Synthesis, Characterization and Application as Antimicrobial Agents

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Polyoxometalates (POMs) were used, together with chitosan (CS), to obtain hybrid nanoaggregates. Three representative POMs were efficiently assembled into nanoparticles of few hundred nm diameter, featuring entangled ribbons substructure. In order to establish suitable preparation and stability conditions, the assemblies were characterized in solution by UV–Vis spectroscopy, dynamic light scattering and ζ-potential. The nanoparticles were tested against E. coli (106 CFU/ml) in aqueous solution, showing a synergic activity of the heteropolyacid H5PMo10V2O40 and CS. For such components, a highly porous and antibacterial film was obtained upon lyophilisation of the colloidal mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the presence of a small amount of CS, Mo 10 V 2 and V 10 gave very broad 51V-NMR signals centred, respectively, at −500 and −550 ppm. The latter value is in agreement with the occurrence of V1–V5 oxo-species [62].

References

  1. Polyoxometalates Cluster Science Issue, U. Kortz and T. Liu (guest eds), (2013). Eur. J. Inorg. Chem. 2013, 7325.

  2. D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev. 36, 105.

    Article  CAS  Google Scholar 

  3. M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. 30, 34.

    Article  Google Scholar 

  4. J. T. Rhule, C. L. Hill, and D. A. Judd (1998). Chem. Rev. 98, 327.

    Article  CAS  Google Scholar 

  5. H. Stephan, M. Kubeil, F. Emmerling, and C. E. Muller (2013). Eur. J. Inorg. Chem. 2013, 1585.

  6. P. Sami, T. D. Anand, M. Premanathan, and K. Rajasekaran (2010). Transition Met. Chem. 35, 1019.

    Article  CAS  Google Scholar 

  7. T. Yamase, N. Fukuda, and Y. Tajima (1996). Biol. Pharm. Bull. 19, 459.

    Article  CAS  Google Scholar 

  8. N. Fukuda, T. Yamase, and Y. Tajima (1999). Biol. Pharm. Bull. 22, 463.

    Article  CAS  Google Scholar 

  9. M. Inoue, T. Suzuki, Y. Fujita, M. Oda, N. Matsumoto, and T. Yamase (2006). J. Inorg. Biochem. 100, 1225.

    Article  CAS  Google Scholar 

  10. M. Barsukova-Stuckart, L. F. Piedra-Garza, B. Gautam, G. Alfaro-Espinoza, N. V. Izarova, A. Banerjee, B. S. Bassil, M. S. Ullrich, H. J. Breunig, C. Silvestru, and U. Kortz (2012). Inorg. Chem. 51, 12015.

    Article  CAS  Google Scholar 

  11. N. Fukuda and T. Yamase (1997). Biol. Pharm. Bull. 20, 927.

    Article  CAS  Google Scholar 

  12. Y. M. Kong, L. N. Pan, J. Peng, B. Xue, J. Lu, and B. X. Dong (2007). Mater. Lett. 61, 2393.

    Article  CAS  Google Scholar 

  13. F.-C. Yang, K.-H. Wu, W.-P. Lin, and M.-K. Hu (2009). Microporous Mesoporous Mater. 118, 467.

    Article  CAS  Google Scholar 

  14. K. H. Wu, P. Y. Yu, C. C. Yang, G. P. Wang, and C. M. Chao (2009). Polym. Degrad. Stab. 94, 1411.

    Article  CAS  Google Scholar 

  15. F. Carn, N. Steunou, M. Djabourov, T. Coradin, F. Ribot, and J. Livage (2008). Soft Matter 4, 735.

    Article  CAS  Google Scholar 

  16. K. I. Draget, K. M. Varum, E. Moen, H. Gynnild, and O. Smidsrod (1992). Biomaterials 13, 635.

    Article  CAS  Google Scholar 

  17. E. Guibal (2004). Sep. Purif. Technol. 38, 43.

    Article  CAS  Google Scholar 

  18. R. Guo, Y. Cheng, D. Ding, X. L. Li, L. Y. Zhang, X. Q. Jiang, and B. R. Liu (2011). Macromol. Biosci. 11, 839.

    Article  CAS  Google Scholar 

  19. A. J. Varma, S. V. Deshpande, and J. F. Kennedy (2004). Carbohydr. Polym. 55, 77.

    Article  CAS  Google Scholar 

  20. E. Guibal (2005). Prog. Polym. Sci. 30, 71.

    Article  CAS  Google Scholar 

  21. D. J. Macquarrie and J. J. E. Hardy (2005). Ind. Eng. Chem. Res. 44, 8499.

    Article  CAS  Google Scholar 

  22. R. A. A. Muzzarelli (2009). Carbohydr. Polym. 76, 167.

    Article  CAS  Google Scholar 

  23. H. Peniche and C. Peniche (2011). Polym. Int. 60, 883.

    Article  CAS  Google Scholar 

  24. J. K. F. Suh and H. W. T. Matthew (2000). Biomaterials 21, 2589.

    Article  CAS  Google Scholar 

  25. R. A. A. Muzzarelli (1996). Carbohydr. Polym. 29, 309.

    Article  CAS  Google Scholar 

  26. S. Roller and N. Covill (1999). Int. J. Food Microbiol. 47, 67.

    Article  CAS  Google Scholar 

  27. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian (1999). Water Res. 33, 2469.

    Article  CAS  Google Scholar 

  28. A. Bhatnagar and M. Sillanpää (2009). Adv. Colloid Interface Sci. 152, 26.

    Article  CAS  Google Scholar 

  29. G. Crini (2005). Prog. Polym. Sci. 30, 38.

    Article  CAS  Google Scholar 

  30. L. Dambies, T. Vincent, A. Domard, and E. Guibal (2001). Biomacromolecules 2, 1198.

    Article  CAS  Google Scholar 

  31. Q. L. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez (2008). Water Res. 42, 4591.

    Article  CAS  Google Scholar 

  32. J. Vinšová and E. Vavříková (2011). Curr. Pharm. Design 17, 3596.

    Article  Google Scholar 

  33. G. Geisberger, E. B. Gyenge, D. Hinger, A. Kach, C. Maake, and G. R. Patzke (2013). Biomacromolecules 14, 1010.

    Article  CAS  Google Scholar 

  34. E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut (2003). Biomacromolecules 4, 1457.

    Article  CAS  Google Scholar 

  35. N. R. Sudarshan, D. G. Hoover, and D. Knorr (1992). Food Biotechnol. 6, 257.

    Article  CAS  Google Scholar 

  36. D. Raafat and H. G. Sahl (2009). Microb. Biotech. 2, 186.

    Article  CAS  Google Scholar 

  37. H. Tang, P. Zhang, T. L. Kieft, S. J. Ryan, S. M. Baker, W. P. Wiesmann, and S. Rogelj (2010). Acta Biomaterialia 6, 2562.

    Article  CAS  Google Scholar 

  38. T. Meissner, R. Bergmann, J. Oswald, K. Rode, H. Stephan, W. Richter, H. Zanker, W. Kraus, F. Emmerling, and G. Reck (2006). Transition Met. Chem. 31, 603.

    Article  CAS  Google Scholar 

  39. D. Menon, R. T. Thomas, S. Narayanan, S. Maya, R. Jayakumar, F. Hussain, V. K. Lakshmanan, and S. V. Nair (2011). Carbohydr. Polym. 84, 887.

    Article  CAS  Google Scholar 

  40. G. Geisberger, S. Paulus, E. B. Gyenge, C. Maake, and G. R. Patzke (2011). Small 7, 2808.

    Article  CAS  Google Scholar 

  41. G. Geisberger, E. B. Gyenge, C. Maake, and G. R. Patzke (2013). Carbohydr. Polym. 91, 58.

    Article  CAS  Google Scholar 

  42. G. Geisberger, S. Paulus, M. Carraro, M. Bonchio, and G. R. Patzke (2011). Chem. Eur. J. 17, 4619.

    Article  CAS  Google Scholar 

  43. K. Pamin, B. Jachimska, K. Onik, J. Poltowicz, and R. Grabowski (2009). Catal. Lett. 127, 167.

    Article  CAS  Google Scholar 

  44. M. Yamada and A. Maeda (2009). Polymer 50, 6076.

    Article  CAS  Google Scholar 

  45. H. M. L. Kang, Y. Yu, H. Pang, Y. Song, and D. Zhang (2013). Sensor. Actuat. B 177, 270.

    Article  CAS  Google Scholar 

  46. J. H. Dawei Fan (2009). J. Phys. Chem. B 113, 7513.

    Article  CAS  Google Scholar 

  47. Y. P. Shan, G. C. Yang, Y. T. Jia, J. Gong, Z. M. Su, and L. Y. Qu (2007). Electrochem. Commun. 9, 2224.

    Article  CAS  Google Scholar 

  48. A. Anitha, V. V. D. Rani, R. Krishna, V. Sreeja, N. Selvamurugan, S. V. Nair, H. Tamura, and R. Jayakumar (2009). Carbohydr. Polym. 78, 672.

    Article  CAS  Google Scholar 

  49. S. P. Chen, G. Z. Wu, D. W. Long, and Y. D. Liu (2006). Carbohydr. Polym. 64, 92.

    Article  CAS  Google Scholar 

  50. Y. H. Feng, Z. G. Han, J. Peng, J. Lu, B. Xue, L. Li, H. Y. Ma, and E. B. Wang (2006). Mater. Lett. 60, 1588.

    Article  CAS  Google Scholar 

  51. M. Aureliano and R. M. C. Gandara (2005). J. Inorg. Biochem. 99, 979.

    Article  CAS  Google Scholar 

  52. I. V. Kozhevnikov (1998). Chem. Rev. 98, 171.

    Article  CAS  Google Scholar 

  53. C. Tanielian (1998). Coord. Chem. Rev. 178, 1165.

    Article  Google Scholar 

  54. R. Bodmeier, K. H. Oh, and Y. Pramar (1989). Drug Dev. Ind. Pharm. 15, 1475.

    Article  CAS  Google Scholar 

  55. Y. Kawashima, T. Handa, A. Kasai, H. Takenaka, S. Y. Lin, and Y. Ando (1985). J. Pharm. Sci. 74, 264.

    Article  CAS  Google Scholar 

  56. E. Chinea, D. Dakternieks, A. Duthie, C. A. Ghilardi, P. Gill, A. Mederos, S. Midollini, and A. Orlandini (2000). Inorg. Chim. Acta 298, 172.

    Article  CAS  Google Scholar 

  57. G. A. Tsigdinos and C. J. Hallanda (1968). Inorg. Chem. 7, 437.

    Article  CAS  Google Scholar 

  58. D. C. Duncan, T. L. Netzel, and C. L. Hill (1995). Inorg. Chem. 34, 4640.

    Article  CAS  Google Scholar 

  59. J. H. Pa and T. L. Yu (2001). Macromol. Chem. Phys. 202, 985.

    Article  CAS  Google Scholar 

  60. S. Tripathy, S. Das, S. P. Chakraborty, S. K. Sahu, P. Pramanik, and S. Roy (2012). Int. J. Pharm. 434, 292.

    Article  CAS  Google Scholar 

  61. G. Liu, T. B. Liu, S. S. Mal, and U. Kortz (2006). J. Am. Chem. Soc. 128, 10103.

    Article  CAS  Google Scholar 

  62. M. Aureliano and D. C. Crans (2009). J. Inorg. Biochem. 103, 536.

    Article  CAS  Google Scholar 

  63. X. H. Wang, J. F. Liu, and M. T. Pope (2003). Dalton Trans. 2003, 957.

  64. N. Liu, X. G. Chen, H. J. Park, C. G. Liu, C. S. Liu, X. H. Meng, and L. J. Yu (2006). Carbohydr. Polym. 64, 60.

    Article  CAS  Google Scholar 

  65. K. Xing, X. G. Chen, M. Kong, C. S. Liu, D. S. Cha, and H. J. Park (2009). Carbohydr. Polym. 76, 17.

    Article  CAS  Google Scholar 

  66. Y. Ma, P. T. Liu, C. L. Si, and Z. Liu (2010). J. Macromol. Sci., Phys 49, 994.

    Article  CAS  Google Scholar 

  67. S. W. Ali, M. Joshi, and S. Rajendran (2011). Adv. Sci. Lett. 3, 452.

    Article  CAS  Google Scholar 

  68. A. L. Neal (2008). Ecotoxicology 17, 362.

    Article  CAS  Google Scholar 

  69. M. W. Calhoun and R. B. Gennis (1993). J. Bacteriol. 175, 3013.

    CAS  Google Scholar 

  70. M. Ammam and E. B. Easton (2013). J. Solid State Electrochem. 17, 137.

    Article  CAS  Google Scholar 

  71. L. H. Bi, U. Kortz, M. H. Dickman, S. Nellutla, N. S. Dalal, B. Keita, L. Nadjo, M. Prinz, and M. Neumann (2006). J. Cluster Sci. 17, 143.

    Article  CAS  Google Scholar 

  72. Y. L. Li, X. R. Yang, F. Yang, Y. P. Wang, P. H. Zheng, and X. X. Liu (2012). Electrochim. Acta 66, 188.

    Article  CAS  Google Scholar 

  73. P. Sami and K. Rajasekaran (2009). J. Chem. Sci. 121, 155.

    Article  CAS  Google Scholar 

  74. M. Vairalakshmi, V. Raj, P. Sami, and K. Rajasekaran (2011). Transition Met. Chem. 36, 875.

    Article  CAS  Google Scholar 

  75. T. Yokota, S. Fujibayashi, Y. Nishiyama, S. Sakaguchi, and Y. Ishii (1996). J. Mol. Catal. A 114, 113.

    Article  CAS  Google Scholar 

  76. I. V. Kozhevnikov (1997). J. Mol. Catal. A 117, 151.

    Article  CAS  Google Scholar 

  77. R. Neumann (2010). Inorg. Chem. 49, 3594.

    Article  CAS  Google Scholar 

  78. C. L. Hill and C. M. Prosser-McCartha Photosensitization and photocatalysis using inorganic and organometallic compounds (Kluver Academic Publishers, Dordrecht, 1997).

    Google Scholar 

  79. W. L. Du, S. S. Niu, Y. L. Xu, Z. R. Xu, and C. L. Fan (2009). Carbohydr. Polym. 75, 385.

    Article  CAS  Google Scholar 

  80. C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che (2007). J. Biol. Inorg. Chem. 12, 527.

    Article  CAS  Google Scholar 

  81. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Q. Zhang (2005). Biomaterials 26, 6176.

    Article  CAS  Google Scholar 

  82. M. Y. Kim and J. Lee (2011). Carbohydr. Polym. 84, 1329.

    Article  CAS  Google Scholar 

  83. Q. C. Zhao, X. D. Feng, S. L. Mei, and Z. X. Jin (2009). Nanotechnology 20, 105101.

    Google Scholar 

  84. H. L. Tan, S. R. Guo, S. B. Yang, X. F. Xu, and T. T. Tang (2012). Acta Biomaterialia 8, 2166.

    Article  CAS  Google Scholar 

  85. L. Ma, C. Y. Gao, Z. W. Mao, J. Zhou, J. C. Shen, X. Q. Hu, and C. M. Han (2003). Biomaterials 24, 4833.

    Article  CAS  Google Scholar 

  86. K. Saita, S. Nagaoka, T. Shirosaki, M. Horikawa, S. Matsuda, and H. Ihara (2012). Carbohydr. Res. 349, 52.

    Article  CAS  Google Scholar 

  87. Z. M. Cui, W. Xing, C. P. Liu, J. H. Liao, and H. Zhang (2009). J. Power Sources 188, 24.

    Article  CAS  Google Scholar 

  88. S. P. Liu, L. Xu, F. Y. Li, W. H. Guo, Y. Xing, and Z. X. Sun (2011). Electrochim. Acta 56, 8156.

    Article  CAS  Google Scholar 

  89. I. Leceta, P. Guerrero, and K. de la Caba (2013). Carbohydr. Polym. 93, 339.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n°246039 and from MIUR (FIRB prot. RBAP11ETKA). We would like to thank the Biotechnology and Bioengineering Application and Research Center staff at the Izmir Institute of Technology for their kind help and technical support. We also thank Dr. Claudio Furlan, CUGAS—University of Padova, for ESEM and EDAX analyses, and Dr. Federico Caicci, Biology Department, University of Padova, for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Altinkaya or M. Carraro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2013_685_MOESM1_ESM.doc

Supplementary data associated with this article can be found in the online version: DLS and ζ-potential graphs, TEM, UV–Vis, FT-IR, ESEM and EDX analyses. (DOC 8729 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiorani, G., Saoncella, O., Kaner, P. et al. Chitosan-Polyoxometalate Nanocomposites: Synthesis, Characterization and Application as Antimicrobial Agents. J Clust Sci 25, 839–854 (2014). https://doi.org/10.1007/s10876-013-0685-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0685-x

Keywords

Navigation