Skip to main content
Log in

Bimetallic Fe–Au Carbonyl Clusters Derived from Collman’s Reagent: Synthesis, Structure and DFT Analysis of Fe(CO)4(AuNHC)2 and [Au3Fe2(CO)8(NHC)2]

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The reaction of the Collman’s reagent Na2Fe(CO)4 with two equivalents of Au(NHC)Cl (NHC = IMes, IPr, IBu) in thf results in the bimetallic Fe(CO)4(AuNHC)2 (NHC = IMes, 2; IPr, 3; IBu, 4; IMes = C3N2H2(C6H2Me3)2; IPr = C3N2H2(C6H i3 Pr2)2; IBu = C3N2H2(CMe3)2) clusters in good yields. Heating 2 in dmf at 100 °C results in the higher nuclearity cluster [Au3Fe2(CO)8(IMes)2] (5). 25 have been fully characterized via IR, 1H and 13C NMR spectroscopies and their structures determined by means of single crystal X-ray crystallography. Gas-phase DFT calculations were carried out on 25 and the model compound cis-Fe(CO)4(AuIDM)2 (6) (IDM = C3N2H2Me2), in order to better understand the metal–metal and metal–ligand interactions in these compounds without the influence of packing forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Selected DFT-optimized bond lengths (average values, Å) for compound 5, corresponding Mayer bond orders in parenthesis: Au(IMes)-Fe 2.554 (0.64); Au(bridging)-Fe 2.663 (0.43); Au-C(IMes) 2.064 (0.83); Au···Au 3.050 (0.12).

References

  1. W. A. Herrmann (2002). Angew. Chem. Int. Ed. 41, 1290.

    Article  CAS  Google Scholar 

  2. R. H. Crabtree (2005). J. Organomet. Chem. 690, 5451.

    Article  CAS  Google Scholar 

  3. S. Díez-González and S. P. Nolan (2007). Coord. Chem. Rev. 251, 874.

    Article  Google Scholar 

  4. O. Kühl (2007). Chem. Soc. Rev. 36, 592.

    Article  Google Scholar 

  5. S. T. Liddle, I. S. Edworthy, and P. L. Arnold (2007). Chem. Soc. Rev. 36, 1732.

    Article  CAS  Google Scholar 

  6. F. E. Hahn and M. C. Jahnke (2008). Angew. Chem. Int. Ed. 47, 3122.

    Article  CAS  Google Scholar 

  7. S. Díez-González, N. Marion, and S. P. Nolan (2009). Chem. Rev. 109, 3612.

    Article  Google Scholar 

  8. H. Jacobsen, A. Correa, A. Poater, C. Costabile, and L. Cavallo (2009). Coord. Chem. Rev. 253, 687.

    Article  CAS  Google Scholar 

  9. O. Kühl (2009). Coord. Chem. Rev. 253, 2481.

    Article  Google Scholar 

  10. L.-A. Schaper, S. J. Hock, W. A. Herrmann, and F. E. Kühn (2013). Angew. Chem. Int. Ed. 52, 270.

    Article  CAS  Google Scholar 

  11. D. J. Nelson and S. P. Nolan (2013). Chem. Soc. Rev. 42, 6723.

    Article  CAS  Google Scholar 

  12. M. N. Hopkinson, C. Richter, M. Schedler, and F. Glorius (2014). Nature 510, 485.

    Article  CAS  Google Scholar 

  13. S. P. Nolan N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis (Wiley, New York, 2014).

    Book  Google Scholar 

  14. G. C. Vougioukalakis and R. H. Grubbs (2010). Chem. Rev. 110, 1746.

    Article  CAS  Google Scholar 

  15. A. Collado, A. Gómez-Suárez, A. R. Martin, A. M. Z. Slawin, and S. P. Nolan (2013). Chem. Commun. 49, 5541.

    Article  CAS  Google Scholar 

  16. N. Marion and S. P. Nolan (2007). Chem. Soc. Rev. 107, 3180.

    Article  Google Scholar 

  17. S. P. Nolan (2011). Acc. Chem. Res. 44, 91.

    Article  CAS  Google Scholar 

  18. H. G. Raubenheimer and S. Cronje (2008). Chem. Soc. Rev. 37, 1998.

    Article  CAS  Google Scholar 

  19. P. J. Barnard, L. E. Wedlock, M. V. Barker, S. J. Berners-Price, D. A. Joyce, B. W. Skelton, and J. H. Steer (2006). Angew. Chem. Int. Ed. 45, 5966.

    Article  CAS  Google Scholar 

  20. D. Marchione, L. Belpassi, G. Bistoni, A. Macchioni, F. Tarantelli, and D. Zuccaccia (2014). Organometallics 33, 4200.

    Article  CAS  Google Scholar 

  21. D. S. Laitar, P. Müller, T. G. Gray, and J. P. Sadighi (2005). Organometallics 24, 4503.

    Article  CAS  Google Scholar 

  22. A. S. K. Hashmi, I. Braun, M. Rudolph, and F. Rominger (2012). Organometallics 31, 644.

    Article  CAS  Google Scholar 

  23. A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, and F. Rominger (2012). Adv. Synth. Catal. 354, 555.

    Article  CAS  Google Scholar 

  24. A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph, and F. Rominger (2012). Angew. Chem. Int. Ed. 51, 4456.

    Article  CAS  Google Scholar 

  25. M. M. Hansmann, M. Rudolph, F. Rominger, and A. S. K. Hashmi (2013). Angew. Chem. Int. Ed. 52, 2593.

    Article  CAS  Google Scholar 

  26. A. S. K. Hashmi, T. Lauterbach, P. Nösel, M. H. Vilhelmsen, M. Rudoplh, and F. Rominger (2013). Chem. Eur. J. 19, 1058.

    Article  CAS  Google Scholar 

  27. M. Alcarazo, T. Stork, A. Anoop, W. Thiel, and A. Fürstner (2010). Angew. Chem. Int. Ed. 49, 2542.

    Article  CAS  Google Scholar 

  28. D. J. Gorin, B. D. Sherry, and F. D. Toste (2008). Chem. Rev. 108, 3351.

    Article  CAS  Google Scholar 

  29. A. Arcadi (2008). Chem. Rev. 108, 3266.

    Article  CAS  Google Scholar 

  30. M. Navarro (2009). Coord. Chem. Rev. 253, 1619.

    Article  CAS  Google Scholar 

  31. B. K. Najafabadi and J. F. Corrigan (2015). Chem. Commun. 51, 665.

    Article  Google Scholar 

  32. C. Richter, K. Schaepe, F. Glorius, and B. J. Ravoo (2014). Chem. Commun. 50, 3204.

    Article  CAS  Google Scholar 

  33. P. Lara, O. Rivada-Wheelaghan, S. Conejero, R. Poteau, K. Philippot, and B. Chaudret (2011). Angew. Chem. Int. Ed. 50, 12080.

    Article  CAS  Google Scholar 

  34. E. A. Baquero, S. Tricard, J. C. Flores, E. de Jesús, and B. Chaudret (2014). Angew. Chem. Int. Ed. 53, 13220.

    Article  CAS  Google Scholar 

  35. D. Goinzalez-Galvez, P. Lara, O. Rivada-Wheelaghan, S. Conejero, B. Chaudret, K. Philippot, and P. W. N. M. van Leewen (2007). Catal. Sci. Technol. 36, 592.

    Google Scholar 

  36. K. V. S. Ranganath, J. Kloesges, A. H. Schäfer, and F. Glorius (2010). Angew. Chem. Int. Ed. 49, 7786.

    Article  CAS  Google Scholar 

  37. J. Vignolle and T. D. Tilley (2009). Chem. Commun. 46, 7230.

    Article  Google Scholar 

  38. X. Ling, N. Schaeffer, S. Roland, and M. P. Pileni (2013). Langmuir 29, 12647.

    Article  CAS  Google Scholar 

  39. P. Lara, A. Suárez, V. Collière, K. Philippot, and B. Chaudret (2014). ChemCatChem 6, 87.

    Article  CAS  Google Scholar 

  40. J. A. Cabeza and P. García-Álvarez (2011). Chem. Soc. Rev. 40, 5389.

    Article  CAS  Google Scholar 

  41. J. L. Durham, W. B. Wilson, D. N. Huh, R. McDonald, and L. F. Szczepura (2015). Chem. Commun. 51, 10536.

    Article  CAS  Google Scholar 

  42. J. A. Cabeza, M. Damonte, and M. G. Hernández-Cruz (2012). J. Organomet. Chem. 711, 68.

    Article  CAS  Google Scholar 

  43. R. Della Pergola, A. Sironi, A. Rosehr, V. Colombo, and A. Sironi (2014). Inorg. Chem. Commun. 49, 27.

    Article  CAS  Google Scholar 

  44. Y. Liu, R. Ganguly, H. V. Huynh, and W. K. Leong (2013). Organometallics 32, 7559.

    Article  CAS  Google Scholar 

  45. Y. Liu, R. Ganguly, H. V. Huynh, and W. L. Leong (2013). Angew. Chem. Int. Ed. 52, 12110.

    Article  CAS  Google Scholar 

  46. S. Saha and B. Captain (2014). Inorg. Chem. 53, 1210.

    Article  CAS  Google Scholar 

  47. L. S. Sharninghausen, B. Q. Mercado, R. H. Crabtree, D. Balcells, and J. Campos (2015). Dalton Trans. 44, 18403.

    Article  CAS  Google Scholar 

  48. J. Campos, L. S. Sharninghausen, R. H. Crabtree, and D. Balcells (2014). Angew. Chem. Int. Ed. 53, 12808.

    Article  CAS  Google Scholar 

  49. C. E. Ellul, M. F. Mahon, and M. K. Whittlesey (2010). J. Organomet. Chem. 695, 6.

    Article  CAS  Google Scholar 

  50. R. D. Adams, J. Tedder, and Y. O. Wong (2015). J. Organomet. Chem. 795, 2.

    Article  CAS  Google Scholar 

  51. C.-N. Lin, C.-Y. Huang, C.-C. Yu, Y.-M. Chen, W.-M. Ke, G.-J. Wang, G.-A. Lee, and M. Shieh (2015). Dalton Trans. 44, 16675.

    Article  CAS  Google Scholar 

  52. M. K. Karunananda, S. R. Parmelee, G. W. Waldhart, and N. P. Mankand (2015). Organometallics 34, 3857.

    Article  CAS  Google Scholar 

  53. S. Banerjee, M. K. Karunananda, S. Bagherzadeh, U. Jayarathne, S. R. Parmelee, G. W. Waldhart, and N. P. Mankand (2014). Inorg. Chem. 53, 11307.

    Article  CAS  Google Scholar 

  54. R. D. Adams and G. Elpitiya (2015). Inorg. Chem. 54, 8042.

    Article  CAS  Google Scholar 

  55. J. P. Collman (1975). Acc. Chem. Res. 8, 342.

    Article  CAS  Google Scholar 

  56. H. B. Chin and R. Bau (1976). J. Am. Chem. Soc. 98, 3434.

    Article  Google Scholar 

  57. C. F. Coffey, J. Lewis, and R. S. Nyholm (1964). J. Chem. Soc. 1741.

  58. V. G. Albano, M. Monari, M. C. Iapalucci, and G. Longoni (1993). Inorg. Chim. Acta 213, 183.

    Article  CAS  Google Scholar 

  59. C. E. Briant, K. P. Hall, and D. M. P. Mingos (1983). Chem. Commun. 15, 843.

    Article  Google Scholar 

  60. L. W. Arndt, M. Y. Darensbourg, J. P. Fackler, R. J. Lusk, D. O. Marler, and K. A. Youndahl (1985). J. Am. Chem. Soc. 107, 7218.

    Article  CAS  Google Scholar 

  61. S. Rudolph, I.-P. Lorenz, and K. Polborn, CSD Communication (Private Communication), CCDC 271793.

  62. L. W. Arndt, C. E. Ash, M. Y. Darensbourg, Y. M. Hsiao, C. M. Kim, J. Reibenspies, and K. A. Youngdahl (1990). J. Organomet. Chem. 394, 733.

    Article  CAS  Google Scholar 

  63. G. Seidel, B. Gabor, R. Goddard, W. Thiel, and A. Furstner (2014). Angew. Chem. Int. Ed. 53, 879.

    Article  CAS  Google Scholar 

  64. H. Braunschweig, P. Brenner, R. D. Dewhurst, M. Kaupp, R. Muller, and S. Ostreicher (2009). Angew. Chem. Int. Ed. 48, 9735.

    Article  CAS  Google Scholar 

  65. H. Braunschweig, K. Radacki, and R. Shang (2013). Chem. Commun. 49, 9905.

    Article  CAS  Google Scholar 

  66. H. Schmidbaur, W. Graf, and G. Muller (1988). Angew. Chem. Int. Ed. 27, 417.

    Article  Google Scholar 

  67. H. Schmidbaur and A. Schier (2012). Chem. Soc. Rev. 41, 370.

    Article  CAS  Google Scholar 

  68. S. S. Pathaneni, and G. R. Desiraju (1993). J. Chem Soc., Dalton Trans. 319.

  69. S. Sculfort and P. Braunstein (2011). Chem. Soc. Rev. 40, 2741.

    Article  CAS  Google Scholar 

  70. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echevarría, E. Cremades, F. Barragán, and S. Alvarez (2008). Dalton Trans. 21, 2832.

    Article  Google Scholar 

  71. A. Bondi (1964). J. Phys. Chem. 68, 441.

    Article  CAS  Google Scholar 

  72. A. F. Wells Structural Inorganic Chemistry, 5th ed (Claredon, Oxford, 1984), p. 1288.

    Google Scholar 

  73. H. Claver and S. P. Nolan (2010). Chem. Commun. 46, 841.

    Article  Google Scholar 

  74. P. Ai, M. Mauro, L. De Cola, A. A. Danopoulos, and P. Braunstein (2016). Angew. Chem. Int. Ed. 55, 3388.

    Article  Google Scholar 

  75. M. T. Dau, J. R. Shakirova, A. J. Karttunen, E. V. Grachova, S. P. Tunik, A. S. Melnikov, T. A. Pakkanen, and I. O. Koshevoy (2014). Inorg. Chem. 53, 4705.

    Article  CAS  Google Scholar 

  76. G. S. M. Tong, S. C. F. Kui, H.-Y. Chao, N. Zhu, and C.-M. Che (2009). Chem. Eur. J. 15, 10777.

    Article  CAS  Google Scholar 

  77. S. D. Hanna, S. I. Khan, and J. I. Zink (1996). Inorg. Chem. 35, 5813.

    Article  CAS  Google Scholar 

  78. P. Ai, A. A. Danopoulos, P. Braunstein, and K Yu Monakhov (2014). Chem. Commun. 50, 103.

    Article  CAS  Google Scholar 

  79. P. Ai, C. Gourlaouen, A. A. Danopoulos, and P. Braunstein (2016). Inorg. Chem. 55, 1219.

    Article  CAS  Google Scholar 

  80. D. Marchione, L. Belpassi, G. Bistoni, A. Macchioni, F. Tarantelli, and D. Zuccaccia (2014). Organometallics 33, 4208.

    Article  Google Scholar 

  81. R. F. W. Bader in Encyclopedia of Computational Chemistry, Wiley, Chichester, 2002. DOI:10.1002/0470845015.caa012.

  82. S. Zacchini (2011). Eur. J. Inorg. Chem. 2011, 4125.

    Article  CAS  Google Scholar 

  83. C. Femoni, M. C. Iapalucci, G. Longoni, C. Tiozzo, and S. Zacchini (2008). Angew. Chem. Int. Ed. 47, 6666.

    Article  CAS  Google Scholar 

  84. I. Ciabatti, C. Femoni, M. C. Iapalucci, A. Ienco, G. Longoni, G. Manca, and S. Zacchini (2013). Inorg. Chem. 52, 10559.

    Article  CAS  Google Scholar 

  85. M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Angew. Chem. Int. Ed. 53, 7233.

    Article  CAS  Google Scholar 

  86. M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Dalton Trans. 43, 13471.

    Article  CAS  Google Scholar 

  87. I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, A. Ienco, G. Longoni, G. Manca, and S. Zacchini (2014). Inorg. Chem. 53, 9761.

    Article  CAS  Google Scholar 

  88. I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, and S. Zacchini (2015). Inorg. Chim. Acta 428, 203.

    Article  CAS  Google Scholar 

  89. E. Keller SCHAKAL99 (University of Freiburg, Germany, 1999).

    Google Scholar 

  90. G. M. Sheldrick SADABS, Program for Empirical Absorption Correction (University of Göttingen, Germany, 1996).

    Google Scholar 

  91. G. M. Sheldrick SHELX97, Program for Crystal Structure Determination (University of Göttingen, Germany, 1997).

    Google Scholar 

  92. A. L. Spek (2003). J. Appl. Cryst. 36, 7.

    Article  CAS  Google Scholar 

  93. A. L. Spek (2009). Acta Cryst. D65, 148.

    Google Scholar 

  94. J.-D. Chai and M. Head-Gordon (2012). Dalton Trans. 41, 5526.

    Article  Google Scholar 

  95. J.-D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.

    Article  CAS  Google Scholar 

  96. I. C. Gerber and J. G. Ángyán (2005). Chem. Phys. Lett. 415, 100.

    Article  CAS  Google Scholar 

  97. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.

    Article  CAS  Google Scholar 

  98. D. Andrae, U. Häussermann, M. Dolg, H. Stoll, and H. Preuss (1990). Theor. Chim. Acta 77, 123.

    Article  CAS  Google Scholar 

  99. M. Reiherand and A. Wolf Relativistic Quantum Chemistry, 2nd ed (Wiley, Weinheim, 2015).

    Google Scholar 

  100. F. E. Jorge, A. Canal Neto, G. G. Camiletti, and S. F. Machado (2009). J. Chem. Phys. 130, 064108.

    Article  CAS  Google Scholar 

  101. A. Canal Neto and F. E. Jorge (2013). Chem. Phys. Lett. 582, 158.

    Article  CAS  Google Scholar 

  102. Gaussian 09, Revision C.01, Frisch, M. J. et al., Gaussian, Inc., Wallingford CT, 2010.

  103. S. Dapprich and G. Frenking (1995). J. Phys. Chem. 99, 9352.

    Article  CAS  Google Scholar 

  104. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.

    Article  Google Scholar 

  105. M. Xiao and T. Lu (2015). J. Adv. Phys. Chem. 4, 111.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zacchini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortoluzzi, M., Cesari, C., Ciabatti, I. et al. Bimetallic Fe–Au Carbonyl Clusters Derived from Collman’s Reagent: Synthesis, Structure and DFT Analysis of Fe(CO)4(AuNHC)2 and [Au3Fe2(CO)8(NHC)2] . J Clust Sci 28, 703–723 (2017). https://doi.org/10.1007/s10876-016-1073-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1073-0

Keywords

Navigation