Skip to main content
Log in

Average Flow Constraints and Stabilizability in Uncertain Production-Distribution Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a multi-inventory system with controlled flows and uncertain demands (disturbances) bounded within assigned compact sets. The system is modelled as a first-order one integrating the discrepancy between controlled flows and demands at different sites/nodes. Thus, the buffer levels at the nodes represent the system state. Given a long-term average demand, we are interested in a control strategy that satisfies just one of two requirements: (i) meeting any possible demand at each time (worst case stability) or (ii) achieving a predefined flow in the average (average flow constraints). Necessary and sufficient conditions for the achievement of both goals have been proposed by the authors. In this paper, we face the case in which these conditions are not satisfied. We show that, if we ignore the requirement on worst case stability, we can find a control strategy driving the expected value of the state to zero. On the contrary, if we ignore the average flow constraints, we can find a control strategy that satisfies worst case stability while optimizing any linear cost on the average control. In the latter case, we provide a tight bound for the cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silver, E.A., Peterson, R.: Decision System for Inventory Management and Production Planning. Wiley, New York (1985)

    Google Scholar 

  2. Blanchini, F., Miani, S., Rinaldi, F.: Guaranteed cost control for multi-inventory systems with uncertain demand. Automatica 40(2), 213–224 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blanchini, F., Miani, S., Ukovich, W.: Control of production-distribution systems with unknown inputs and system failures. IEEE Trans. Autom. Control 45(6), 1072–1081 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boukas, E.K., Yang, H., Zhang, Q.: Minimax production planning in failure-prone manufacturing systems. J. Optim. Theory Appl. 82(2), 269–286 (1995)

    Article  MathSciNet  Google Scholar 

  5. Chase, C., Ramadge, P.J.: On real-time policies for flexible manufacturing systems. IEEE Trans. Autom. Control 37(4), 491–496 (1992)

    Article  MathSciNet  Google Scholar 

  6. Kimemia, J., Gershwin, S.B.: An algorithm for the computer control of a flexible manufacturing system. IIE Trans. 15, 353–362 (1983)

    Article  Google Scholar 

  7. Lou, S., Sethi, S., Sorger, G.: Analysis of real-time multiproduct lot scheduling. IEEE Trans. Autom. Control 36(2), 243–248 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Narahari, Y., Viswanadham, N., Kumar, V.K.: Lead time modeling and acceleration of product design and development. IEEE Trans. Robotics Autom. 15(5), 882–896 (1999)

    Article  Google Scholar 

  9. Perkins, J.R., Kumar, P.R.: Stable, distributed, real-time scheduling of flexible manufacturing/assembly/disassembly systems. IEEE Trans. Autom. Control 34(2), 139–148 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ephremides, A., Verdú, S.: Control and optimization methods in communication networks. IEEE Trans. Autom. Control 34, 930–942 (1989)

    Article  MATH  Google Scholar 

  11. Hajek, B., Ogier, R.: Optimal dynamic routing in communication networks with continuous traffic. Networks 14, 457–487 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Larson, R.E., Keckler, W.G.: Applications of dynamic programming to the control of water resource systems. Automatica 5, 15–26 (1969)

    Article  Google Scholar 

  13. Moreno, J.C., Papageorgiou, M.: A linear programming approach to large-scale linear optimal control problems. IEEE Trans. Autom. Control 40, 971–977 (1995)

    Article  MATH  Google Scholar 

  14. Akella, R., Kumar, P.R.: Optimal control of production rate in a failure prone manufacturing system. IEEE Trans. Autom. Control 31(2), 116–126 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kostyukova, O., Kostina, E.: Robust optimal feedback for terminal linear-quadratic control problems under disturbances. Math. Program. Ser. B 107, 131–153 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moss, F.H., Segall, A.: An optimal control approach to dynamic routing in networks. IEEE Trans. Autom. Control 27, 329–339 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Martinelli, F., Shu, C., Perkins, J.: On the optimality of myopic production controls for single-server, continuous flow manufacturing systems. IEEE Trans. Autom. Control 46(8), 1269–1273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Presman, E., Sethi, S.P., Zhang, Q.: Optimal feedback production planning in a stochastic N-machine flowshop. Automatica 31, 1325–1332 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sethi, S.P., Zhang, H., Zhang, Q.: Average-Cost Control of Stochastic Manufacturing Systems. Springer, New York (2005)

    MATH  Google Scholar 

  20. Adida, E., Perakis, G.: A robust optimization approach to dynamic pricing and inventory control with no backorders. Math. Program. Ser. B 107, 97–129 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Atamturk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55(4), 662–673 (2007)

    Article  MathSciNet  Google Scholar 

  22. Bertsimas, D., Thiele, A.: A robust optimization approach to inventory theory. Oper. Res. 54(1), 150–168 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Erera, A., Morales, J., Savelsbergh, M.W.P.: Robust optimization for empty repositioning problems. Oper. Res. 57(2), 468–483 (2009)

    Article  MathSciNet  Google Scholar 

  24. Ordóñez, F., Zhao, J.: Robust capacity expansion of network flow. Network 38, 136–145 (2007)

    Article  Google Scholar 

  25. Bauso, D., Blanchini, F., Pesenti, R.: Robust control strategies for multi inventory systems with average flow constraints. Automatica 42, 1255–1266 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Loparo, K.A., Feng, X.: Stability of Stochastic Systems. The Control Handbook. CRC Press, Boca Raton (1996)

    Google Scholar 

  27. Boukas, E.K.: Manufacturing systems: LMI approach. IEEE Trans. Autom. Control 51(6), 1014–1018 (2006)

    Article  MathSciNet  Google Scholar 

  28. Calafiore, G., Campi, M.C.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102, 25–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bauso.

Additional information

Communicated by C. Deissenberg.

Research was supported by PRIN “Robustness optimization techniques for high performance control systems”, and MURST-PRIN 2007ZMZK5T “Decisional model for the design and the management of logistics networks characterized by high interoperability and information integration.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauso, D., Blanchini, F. & Pesenti, R. Average Flow Constraints and Stabilizability in Uncertain Production-Distribution Systems. J Optim Theory Appl 144, 12–28 (2010). https://doi.org/10.1007/s10957-009-9593-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9593-5

Keywords

Navigation