Skip to main content
Log in

Game Theoretic Decentralized Feedback Controls in Markov Jump Processes

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies a decentralized routing problem over a network, using the paradigm of mean-field games with large number of players. Building on a state-space extension technique, we turn the problem into an optimal control one for each single player. The main contribution is an explicit expression of the optimal decentralized control which guarantees the convergence both to local and to global equilibrium points. Furthermore, we study the stability of the system also in the presence of a delay which we model using an hysteresis operator. As a result of the hysteresis, we prove existence of multiple equilibrium points and analyze convergence conditions. The stability of the system is illustrated via numerical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Garavello, M., Piccoli, B.: Traffic Flow on Networks. American Institute of Mathematical Sciences, Springfield (2006)

    MATH  Google Scholar 

  2. Engel, K.-J., Kramar, F.M., Nagel, R., Sikolya, E.: Vertex control of flows in networks. Netw. Heterog. Media 3(4), 709–722 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control. Springer, London (2008)

    Book  MATH  Google Scholar 

  4. Bauso, D., Zhang, X., Papachristodoulou, A.: Density Flow over Networks via Mean-Field Game. IEEE Trans. Autom. Control (2016). doi:10.1109/TAC.2016.2584979

  5. Bauso, D., Blanchini, F., Giarré, L., Pesenti, R.: The linear saturated decentralized strategy for constrained flow control is asymptotically optimal. Automatica 49(7), 2206–2212 (2013)

    Article  MathSciNet  Google Scholar 

  6. Como, G., Savla, K., Acemoglu, D., Dahleh, M., Frazzoli, E.: Distributed robust routing in dynamical networks-Part I: locally responsive policies and weak resilience. IEEE Trans. Autom. Control 58(2), 317–332 (2013)

    Article  Google Scholar 

  7. Como, G., Savla, K., Acemoglu, D., Dahleh, M., Frazzoli, E.: Distributed robust routing in dynamical networks-Part II: strong resilience, equilibrium selection and cascaded failures. IEEE Trans. Autom. Control 58(2), 333–348 (2013)

    Article  Google Scholar 

  8. Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49, 237–252 (1998)

    Article  MATH  Google Scholar 

  9. Basna, R., Hilbert, A., Kolokoltsov, V.: An epsilon Nash equilibrium for non-linear Markov games of mean-field-type on finite spaces. Commun. Stoch. Anal. 8(4), 449–468 (2014)

    MathSciNet  Google Scholar 

  10. Bagagiolo, F., Bauso, D.: Objective function design for robust optimality of linear control under state-constraints and uncertainty. ESAIM Control Optim. Calc. Var. 17(1), 155–177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carmona, R., Delarue, F., Lachapelle, A.: Control of McKean–Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ceragioli, F., De Persis, C., Frasca, P.: Discontinuities and hysteresis in quantized average consensus. Automatica 47(9), 1916–1928 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, M.Y., Caines, P.E., Malhamé, R.P.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. IEEE Conference on Decision and Control, HI, USA, pp. 98–103 (2003)

  14. Huang, M.Y., Caines, P.E., Malhamé, R.P.: Large population cost-coupled LQG problems with non-uniform agents: individual-mass behaviour and decentralized \(\varepsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52(9), 1560–1571 (2007)

    Article  Google Scholar 

  15. Lasry, J.-M., Lions, P.-L.: Jeux \(\grave{a}\) champ moyen. I Le cas stationnaire. Comptes Rendus Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weintraub, G.Y., Benkard, C., Van Roy, B.: Oblivious equilibrium: a mean field approximation for large-scale dynamic games. In: Advances in Neural Information Processing Systems. MIT Press (2005)

  18. Achdou, Y., Camilli, F., Capuzzo Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gueant, O., Lasry, J.-M., Lions, P.-L.: Mean field games and applications. In: Paris-Princeton Lectures, pp. 1–66. Springer (2010)

  20. Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean-field equilibria in economics. Math. Models Methods Appl. Sci. 20(4), 1–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bauso, D., Zhu, Q., Basar, T.: Mixed integer optimal compensation: decompositions and mean-field approximations. In: Proceeding of 2012 American control conference, Montreal, Canada (2012)

  22. Bagagiolo, F., Bauso, D.: Mean-field games and dynamic demand management in power grids. Dyn. Games Appl. 4(2), 155–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Achdou, Y., Capuzzo Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Casti, J.: On the general Inverse problem of optimal control theory. J. Optim. Theory Appl. 32(4), 491–497 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chitour, Y., Jean, F., Mason, P.: Optimal control models of goal-oriented human locomotion. SIAM J. Control Optim. 50(1), 147–170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krasnoselskii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1989)

    Book  Google Scholar 

  27. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  28. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. II 1, 325–378 (1952)

    Google Scholar 

Download references

Acknowledgements

The work has been developed within the OptHySYS project of the University of Trento that is gratefully acknowledged. This work has started during a visiting period of R. Maggistro at the Department of Automatic Control and Systems Engineering, the University of Sheffield, from January 18, 2016, to March 22, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Maggistro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagagiolo, F., Bauso, D., Maggistro, R. et al. Game Theoretic Decentralized Feedback Controls in Markov Jump Processes. J Optim Theory Appl 173, 704–726 (2017). https://doi.org/10.1007/s10957-017-1078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1078-3

Keywords

Mathematics Subject Classification

Navigation