Skip to main content
Log in

Sustainable Management of Tourist Flow Networks: A Mean Field Model

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, we propose a mean field game approach for modeling the flows of excursionists within a network of tourist attractions. We prove the existence of an equilibrium within the network using a balance ordinary differential equation together with optimality conditions in terms of the value function. We also propose a bi-level formulation of the problem where we aim at achieving a sustainable-oriented control strategy in the upper level and at maximizing excursionists’ satisfaction in the lower level. Our proposed model may provide an effective management tool for local authorities who deal with the challenging problem of finding an optimal control policy to the often conflicting objectives of ensuring the maximum excursionists’ satisfaction while pursuing the highest sustainability benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

‘Not applicable’ for that paper.

References

  1. Achdou, Y., Camilli, F., Capuzzo Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50, 77–109 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Andria, J., di Tollo, G., Pesenti, R.: A fuzzy evaluation of tourism sustainability. In: de Vries, N.J., Moscato, P. (eds.) Business and Consumer Analytics, New Ideas, pp. 911–932. Springer (2019)

  3. Andria, J., di Tollo, G., Pesenti, R.: A heuristic fuzzy algorithm for assessing and managing tourism sustainability. Soft. Comput. 24(6), 4027–4040 (2020)

    Google Scholar 

  4. Andria, J., di Tollo, G., Pesenti, R.: Fuzzy multi-criteria decision-making: an entropy-based approach to assess tourism sustainability. Tour. Econ. 27(1), 168–186 (2021)

    Google Scholar 

  5. Bagagiolo, F., Bauso, D.: Mean-field games and dynamic demand management in power grids. Dyn. Games Appl. 4, 155–176 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bagagiolo, F., Faggian, S., Maggistro, R., Pesenti, R.: Optimal control of the mean field equilibrium for a pedestrian tourists’ flow model. Netw. Spat. Econ. 22, 243–266 (2022)

    MATH  Google Scholar 

  7. Bagagiolo, F., Maggistro, R., Pesenti, R.: A mean field approach to model flows of agents with path preferences over a network. In: Proceedings of the 58rd IEEE Control Decision Conference, pp. 1249–1254 (2019)

  8. Bagagiolo, F., Maggistro, R., Pesenti, R.: Origin-to-destination network flow with path preferences and velocity controls: a mean field game-like approach. J. Dyn. Games 4(8), 359–380 (2021)

    MathSciNet  MATH  Google Scholar 

  9. Baker, D.A., Crompton, J.L.: Quality, satisfaction and behavioral intentions. Ann. Tour. Res. 27(3), 785–804 (2000)

    Google Scholar 

  10. Camilli, F., Carlini, E., Marchi, C.: A model problem for mean field games on networks. Discrete Contin. Dyn. Syst. 35, 4173–4192 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Camilli, F., De Maio, R., Tosin, A.: Transport of measures on networks. Netw. Heterog. Media 12, 191–215 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Cardaliaguet, P., Lehalle, C.A.: Mean field game of controls and an application to trade crowding. Math. Financ. Econ. 12, 335–363 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Castellani, M., Pattitoni, P., Vici, L.: Pricing visitor preferences for temporary art exhibitions. Tour. Econ. 21(1), 83–103 (2015)

    Google Scholar 

  14. Chi, C.G., Cai, R., Li, Y.: Factor influencing residents’ subjective well-being at world heritage sites. Tour. Manag. 63, 209–222 (2017)

    Google Scholar 

  15. Clark, B.R.: Coastal Zone Management Handbook. Lewis/CRC Publishers, Boca Raton (1996)

    Google Scholar 

  16. Cristiani, E., Priuli, F., Tosin, A.: Modeling rationality to control self-organization of crowds: an environmental approach. SIAM J. Appl. Math. 75, 605–629 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Dahles, H.: The politics of tour guiding: image management in Indonesia. Ann. Tour. Res. 29(3), 783–800 (2002)

    Google Scholar 

  18. Disegna, M,. Osti, L.: (2013) The influence of visitors’ satisfaction on expenditure behaviour. BEMPS—Bozen Economics & Management Paper Series BEMPS14, Faculty of Economics and Management at the Free University of Bozen

  19. Disegna, M., Osti, L.: Tourists’ expenditure behaviour: the influence of satisfaction and the dependence of spending categories. Tour. Econ. 22(1), 5–30 (2016)

    Google Scholar 

  20. Erdogan, G., Laporte, G.: The orienteering problem with variable profits. Networks 61(2), 104–116 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Fay, B.: Essentials of Tour Management. Prentice Hall (1992)

  22. Guéant, O., Lasry, J.M., Lions, P.L.: Mean field game and applications. Paris-Princet. Lect. Math. Financ. 2003, 205–266 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Homburg, C., Koschate, N., Hoyer, W.D.: Do satisfied customers really pay more? A study of the relationship between customer satisfaction and willingness to pay. J. Mark. 69(2), 84–96 (2005)

    Google Scholar 

  24. Huang, M., Caines, P., Malhamé, R.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–251 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Huang, M., Caines, P., Malhamé, R.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\varepsilon \)-Nash equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Jurdana, D.S., Frleta, D.S.: Satisfaction as a determinant of tourist expenditure. Curr. Issues Tour. 20(7), 691–704 (2017)

    Google Scholar 

  27. Lachapelle, A., Wolfram, M.T.: On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res. B 45, 1572–1589 (2011)

    Google Scholar 

  28. Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean-field equilibria in economics. Math. Models Methods Appl. Sci. 20, 1–22 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Lasry, J.M., Lions, P.L.: Juex à champ Moyen II. Horizon fini et controle optimal. C. R. Math. 343, 679–684 (2006)

    MATH  Google Scholar 

  30. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Lew, A., McKercher, B.: Modeling tourist movements: a local destination analysis. Ann. Tour. Res. 33(2), 403–423 (2006)

    Google Scholar 

  32. Maunier, C., Camelis, C.: Toward an identification of elements contributing to satisfaction with the tourism experience. J. Vacat. Mark. 19(1), 19–39 (2013)

    Google Scholar 

  33. McDowall, S.: International tourist satisfaction and destination loyalty: Bangkok, Thailand. Asia Pac. J. Tour. Res. 15(1), 21–42 (2010)

    MathSciNet  Google Scholar 

  34. Quinn, B.: Performing tourism venetian residents in focus. Ann. Tour. Res. 34(2), 458–476 (2007)

    Google Scholar 

  35. Saleh, F.A., Bakaryan, T., Gomes, D.A., Ribeiro, R.: First-order mean-field games on networks and Wardrop equilibrium. Tech. Rep. arXiv:2207.01397 (2022)

  36. Sardianou, E., Kostakis, I., Mitoula, R., Gkaragkani, V., Lalioti, E., Theodoropoulou, E.: Understanding the entrepreneurs’ behavioural intentions towards sustainable tourism: a case study from Greece. Environ. Dev. Sustain. 18, 857–879 (2016)

    Google Scholar 

  37. Schwartz, Z., Chen, C.C.: Hedonic motivations and the effectiveness of risk perceptions-oriented revenue management policies. J. Hosp. Tour. Res.. 36(2), 232–250 (2012)

    Google Scholar 

  38. Taplin, J.H.E., Qiu, M.: Car trip attraction and route choice in Australia. Ann. Tour. Res. 24(3), 624–637 (1997)

    Google Scholar 

  39. The World Tourism Organization: Tourism Carrying capacity: report on the senior—level expert group meeting held in Paris. Tech. Rep., WTO, Madrid (1992)

  40. The World Tourism Organization: Sustainable development (2020). https://www.unwto.org/sustainable-development. Accessed 18 July 2020

  41. Uriely, N.: The tourist experience: conceptual developments. Ann. Tour. Res. 32(1), 199–216 (2005)

    Google Scholar 

  42. Vittersø, J., Vorkinn, M., Vistad, O.I., Vaagland, J.: Tourist experiences and attractions. Ann. Tour. Res. 27(2), 432–450 (2000)

    Google Scholar 

  43. Wong, C., McKercher, B.: Day tour itineraries: searching for the balance between commercial needs and experiential desires. Tour. Manag. 33(6), 1360–1372 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Maggistro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Martine Labbe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The function \({{{\mathcal {V}}}}_r^{\xi ,e_{11}}\) as defined in (21) is of the form

$$\begin{aligned} \mathcal{V}_r^{\xi ,e_{11}}(t)= & {} \frac{c_{\xi ,1}}{2}\frac{(l_{e_{11}})^2}{T-t}+\frac{c_{\xi ,4}}{2}\left( {\widetilde{u}}^{\xi , e_{11}}-\frac{l_{e_{11}}}{T-t}\right) ^2(T-t)\nonumber \\{} & {} +\, \int _{t}^T\Big ( c_{\xi ,2}{{\widetilde{\varphi }}}_{e_{11}}-\frac{c_{\xi ,3}(\tanh (s-1)-1)}{m_{e_{11}}}\Big )\,\textrm{d}s, \end{aligned}$$
(52)

only if

$$\begin{aligned} \varDelta q_{e_{11}}+\frac{c_{\xi ,4}}{2}({\widetilde{u}}^{\xi , e_{11}})^2 \ge \frac{c_{\xi ,1}}{2}\frac{(l_{e_{11}})^2}{T-t}+\frac{c_{\xi ,4}}{2}\left( {\widetilde{u}}^{\xi , e_{11}}-\frac{l_{e_{11}}}{T-t}\right) ^2(T-t), \end{aligned}$$

from which we get

$$\begin{aligned} (T-t)\left( 1-\frac{c_{\xi ,4}({\widetilde{u}}^{\xi , e_{11}})^2(T-t)-2c_{\xi ,4}{\widetilde{u}}^{\xi , e_{11}}l_{e_{11}} }{2\varDelta q_{e_{11}}+c_{\xi ,4}({\widetilde{u}}^{\xi , e_{11}})^2}\right) \ge \frac{(c_{\xi ,1}+c_{\xi ,4})l_{e_{11}}^2}{2\varDelta q_{e_{11}}+c_{\xi ,4}({\widetilde{u}}^{\xi , e_{11}})^2}. \nonumber \\ \end{aligned}$$
(53)

Considering the first factor of the left hand side of (53), we get that

$$\begin{aligned} t\le T-\frac{(c_{\xi ,1}+c_{\xi ,4})l_{e_{11}}^2}{2\varDelta q_{e_{11}}+c_{\xi ,4}({\widetilde{u}}^{\xi , e_{11}})^2}\le T-h', \nonumber \\ \end{aligned}$$

with \(h'>0\) independent of r, on \(\rho \) and of the control. If instead, we analyze the second factor of the left hand side of (53) we have

$$\begin{aligned} t\ge T-\frac{l_{e_{11}}(-l_{e_{11}}(c_{\xi ,1}+c_{\xi ,4})+2c_{\xi ,4}{\widetilde{u}}^{\xi , e_{11}})+c_{\xi ,4}({\widetilde{u}}^{\xi , e_{11}})^2+2\varDelta q_{e_{11}}}{c_{\xi ,4}({\widetilde{u}}^{\xi , e_{11}})^2}\ge T-h'', \nonumber \\ \end{aligned}$$
(54)

with \(h''\) independent of r, on \(\rho \) and on the control. If in (54) \(h''>0\) then \({{{\mathcal {V}}}}_r^{e_{11},\xi }\) has the shape of (52) only if \(T-\max \{ h', h''\}\le t\le T-\min \{h', h'' \}\). If, instead, \(h''\le 0\) then \(\mathcal{V}_r^{e_{11},\xi }\) is not defined as in (52) but rather by (see (21)):

$$\begin{aligned} {{{\mathcal {V}}}}_r^{\xi ,e_{11}}(t)=\varDelta q_{e_{11}}+\frac{c_{\xi ,4}}{2}({\widetilde{u}}^{\xi , e_{11}})^2+ \int _{t}^T\Bigg ( c_{\xi ,2}{{\widetilde{\varphi }}}_{e_{11}}-\frac{c_{\xi ,3}(\tanh (s-1)-1)}{m_{e_{11}}}\Bigg )\,\textrm{d}s. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andria, J., Maggistro, R. & Pesenti, R. Sustainable Management of Tourist Flow Networks: A Mean Field Model. J Optim Theory Appl 196, 730–761 (2023). https://doi.org/10.1007/s10957-023-02158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02158-8

Keywords

Mathematics Subject Classification

Navigation