Skip to main content
Log in

Sol–gel derived mesoporous Pt and Cr-doped WO3 thin films: the role played by mesoporosity and metal doping in enhancing the gas sensing properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous Cr or Pt-doped WO3 thin films to be employed as ammonia gas sensors were prepared by a fast one-step sol–gel procedure, based on the use of triblock copolymer as templating agent. The obtained films were constituted by aggregates of interconnected WO3 nanocrystals (20–50 nm) separated by mesopores with dimensions ranging between 2 and 15 nm. The doping metals, Pt and Cr, resulted differently hosted in the WO3 mesoporous matrix. Chromium is homogeneously dispersed in the oxide matrix, mainly as Cr(III) and Cr(V) centers, as revealed by EPR spectroscopy; instead platinum segregated as Pt (0) nanoparticles (4 nm) mainly included inside the WO3 nanocrystals. The semiconductor layers containing Pt nanoclusters revealed, upon exposure to NH3, remarkable electrical responses, much higher than Cr-doped and undoped layers, particularly at low ammonia concentration (6.2 ppm). This behavior was attributed to the presence of Pt nanoparticles segregated inside the semiconductor matrix, which act as catalysts of the N–H bond cleavage, decreasing the activation barrier in the ammonia dissociation. The role of the mesoporous structure in influencing the chemisorption and the gas diffusion in the WO3 matrix appeared less decisive than the electronic differences between the two examined doping metals. The overall results suggest that a careful combination between mesoporous architecture and metal doping can really promote the electrical response of WO3 toward ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Göpel W, Hesse J, Zemel JN (1991) Sensors. A comprehensive survey, vol 2: Chemical and biochemical sensors (Parts 1 and 2). VCH Weinheim, New York

    Google Scholar 

  2. Barsan SN, Bauer M, Weimar U (2001) Sens Actuators B 73:1–26

    Article  Google Scholar 

  3. Göpel W, Hesse J, Zemel JN, Meixner H, Jones R (1995) Sensors. A comprehensive survey, vol 8. VCH Weinheim, New York

    Google Scholar 

  4. Moseley PT, Tofield BC (1987) Solid- state gas sensors. Hilger, Bristol/Philadelphia

    Google Scholar 

  5. Sberveglieri G (1992) Gas sensors: principles, operation and developments. Kluwer, Boston

    Google Scholar 

  6. Mandelis A, Christofides C (1993) Physics, chemistry and technology of solid state gas sensor devices. Wiley, New York

    Google Scholar 

  7. Cui Y, Wie Q, Park H, Lieber CM (2001) Science 293:1289–1292

    Article  CAS  Google Scholar 

  8. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  9. Lee JH (2009) Sens Actuators B 140:319–336

    Article  Google Scholar 

  10. Scott RWJ, Yang SM, Coombs N, Williams DE, Ozin GA (2003) Adv Funct Mater 13:225–231

    Article  CAS  Google Scholar 

  11. Acciarri M, Barberini R, Canevali C, Mari CM, Mattoni M, Morazzoni F, Nodari L, Polizzi S, Ruffo R, Russo U, Sala M, Scotti R (2005) Chem Mater 17:6167–6171

    Article  CAS  Google Scholar 

  12. Sasahara K, Hyodo T, Shimizu Y, Egashira M (2004) J Eur Ceram Soc 24:1961–1967

    Article  CAS  Google Scholar 

  13. Wang H, Liang J, Fan H, Xi B, Zhang M, Xiong S, Zhu Y, Qian Y (2008) J Solid State Chem 181:122–129

    Article  CAS  Google Scholar 

  14. Firooz AA, Mahjoub AR, Khodadadi AA (2009) Sens Actuators B 141:89–96

    Article  Google Scholar 

  15. D’Arienzo M, Armelao L, Cacciamani A, Mari CM, Polizzi S, Ruffo R, Scotti R, Testino A, Wahba L, Morazzoni F (2010) Chem Mater 22:4083–4089

    Article  Google Scholar 

  16. Choi WK, Song SK, Cho JS, Yoon YS, Choi D, Jung HJ, Koh SK (1997) Sens Actuators B 40:21–27

    Article  CAS  Google Scholar 

  17. Canevali C, Chiodini C, Morazzoni F, Scotti R, Bianchi CL (1997) J Mater Chem 7:997–1002

    Article  Google Scholar 

  18. Canevali C, Mari CM, Mattoni M, Morazzoni F, Nodari L, Ruffo R, Russo U, Scotti R (2005) J Phys Chem B 109:7195–7202

    Article  CAS  Google Scholar 

  19. Niederberger M, Garnweitner G (2006) Chem Eur J 12:7282–7302

    Article  CAS  Google Scholar 

  20. Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M, Niederberger M (2006) Angew Chem Int Ed 45:261–265

    Article  CAS  Google Scholar 

  21. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152–155

    Article  CAS  Google Scholar 

  22. Bailey FE, Koleske JV (1990) Alkylene oxides and their polymers. Marcel Dekker, New York

    Google Scholar 

  23. Pokhrel S, Simion CE, Teodorescu VS, Barsan N, Weimar U (2009) Adv Funct Mater 19:1767–1774

    Article  CAS  Google Scholar 

  24. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Sens Actuators B 3:147–155

    Article  Google Scholar 

  25. Simon I, Barsan N, Bauer M, Weimar U (2001) Sens Actuators B 73:1–26

    Article  Google Scholar 

  26. Epifani M, Andreu T, Magaña CR, Díaz R, Arbiol J, Siciliano P, Morante JR (2010) Sens Actuators B 148:200–206

    Article  Google Scholar 

  27. Epifani M, Andreu T, Arbiol J, Diaz R, Siciliano P, Morante JR (2009) Chem Mater 21:5215–5221

    Article  CAS  Google Scholar 

  28. Brunauer S, Emmet PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  29. Barret EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380

    Article  Google Scholar 

  30. Jimenez I, Centeno MA, Scotti R, Morazzoni F, Arbiol J, Cornet A, Morante JR (2004) J Mater Chem 14:2412–2420

    Article  CAS  Google Scholar 

  31. Morazzoni F, Scotti R, Origoni L, D’Arienzo M, Jimenez I, Cornet A, Morante JR (2007) Catalysis Today 126:169–176

    Article  CAS  Google Scholar 

  32. Zamani C, Casals O, Andreu T, Morante JR, Romano-Rodriguez A (2009) Sens Actuators B 140:557–562

    Article  Google Scholar 

  33. Mudiyanselage K, Trenary M, Meyer RJ (2007) J Phys Chem C 111:7127–7136

    Article  CAS  Google Scholar 

  34. Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernández-Ramírez F, Peiró F, Cornet A, Morante JR, Solovyov LA, Tian B, Bo T, Zhao D (2007) Adv Funct Mater 17:1801–1806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Milano group gratefully acknowledges the financial support of the Cariplo Foundation of Milano. The authors also personally thank Davide Fumagalli for his support in the experimental part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano D’Arienzo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Arienzo, M., Crippa, M., Gentile, P. et al. Sol–gel derived mesoporous Pt and Cr-doped WO3 thin films: the role played by mesoporosity and metal doping in enhancing the gas sensing properties. J Sol-Gel Sci Technol 60, 378–387 (2011). https://doi.org/10.1007/s10971-011-2568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2568-7

Keywords

Navigation