Skip to main content
Log in

Study of Eu3+ and Tm3+ substitution effects in sol–gel fabricated calcium hydroxyapatite

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, an aqueous sol–gel chemistry route based on phosphoric acid as the phosphorus precursor, calcium acetate monohydrate and lanthanide (III) oxides as source of calcium and lanthanide ions, respectively, have been used to prepare europium- and thulium-substituted calcium hydroxyapatite (CHAp:Ln3+) powders. The ethylenediaminetetraacetic acid was used as complexing agent in the sol–gel processing. The final products were obtained by calcination of the dry precursor gels for 5 h at 1000 °C. The phase transformations, composition, and structural changes in the polycrystalline samples were studied by infrared spectroscopy, X-ray powder diffraction analysis, scanning electron microscopy and photoluminescence measurements. It was demonstrated, however, that the substitution of calcium by Eu or Tm proceeds in the CHAp at low concentration of lanthanide ion.

Graphical abstract

Excitation and emission of Tm3+ in CHAp:Tm3+ spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nagai H, Kobayashi-Fujioka M, Fujisawa K, Ohe G, Takamaru N, Hara K, Uchida D, Tamatani T, Ishikawa K, Miyamoto Y (2015). J Mater Sci-Mater Med 26:99. Art. No.

    Article  Google Scholar 

  2. Kollath VO, Chen Q, Mullens S, Luyten J, Traina K, Boccaccini AR, Cloots R (2016). J Mater Sci 51:2338–2346

    Article  Google Scholar 

  3. Chen XF, Liu Y, Yang J, Wu WL, Miao LY, Yu YJ, Yang XB, Sun WB (2016). Mater Sci Eng C-Mater Biol Appl 59:384–389

    Article  Google Scholar 

  4. Bigi A, Boanini E, Rubini K (2004). J Solid State Chem 177:3092

    Article  Google Scholar 

  5. Liu J, Li K, Wang H, Zhu M, Yan H (2004). Chem Phys Lett 396:429

    Article  Google Scholar 

  6. Fowler CE, Li M, Mann S, Margolis HC (2005). J Mater Chem 15:3317

    Article  Google Scholar 

  7. Goller G, Oktar FN, Agathopoulos S, Tulyaganov DU, Ferreira JMF, Kayali ES, Peker I (2006). J Sol-Gel Sci Technol 37:111

    Article  Google Scholar 

  8. Garskaite E, Gross KA, Yang SW, Yang TCK, Yang JC, Kareiva A (2014). Cryst Eng Commun 16:3950–3959

    Article  Google Scholar 

  9. Trinkunaite-Felsen J, Stankeviciute Z, Yang JC, Yang TCK, Beganskiene A, Kareiva A (2014). Ceram Int 40:12717–12722

    Article  Google Scholar 

  10. Wakamura M, Kandori K, Ishikawa T (2000). Colloids Surf 164:297

    Article  Google Scholar 

  11. Serret A, Cabanas MV, Vallet-Regi M (2000). Chem Mater 12:3836

    Article  Google Scholar 

  12. Supova M (2015). Ceram Int 41:9203–9231

    Article  Google Scholar 

  13. Rabelo Neto JDR, Knopf TB, Fredel MC, Olate S, de Moraes PH (2015). Int J Morphol 33:1189–1193

    Article  Google Scholar 

  14. Kalnina D, Gross KA, Onufrijevs P, Dauksta E, Nikolajeva V, Stankeviciute Z, Kareiva A (2015). Key Eng Mater 631:384–389

    Article  Google Scholar 

  15. Nishikawa M, Tan LH, Nakabayashi Y, Hasegawa T, Shiroishi W, Kawahara S, Saito N, Nosaka A, Nosaka Y (2015). J Photochem Photobiol A-Chem 311:30–34

    Article  Google Scholar 

  16. Zhou H, Kong SQ, Pan Y, Zhang ZG, Deng LH (2015). Mater Sci Eng C-Mater Biol Appl 56:174–180

    Article  Google Scholar 

  17. Bogdanoviciene I, Cepenko M, Traksmaa R, Kareiva A, Tõnsuaadu K (2015). J Therm Anal Calorim 121:107–114

    Article  Google Scholar 

  18. Guerra-Lopez JR, Echeverria GA, Gueida JA, Vina R, Punte G (2015). J Phys Chem Solids 81:57–65

    Article  Google Scholar 

  19. Trinkunaite-Felsen J, Prichodko A, Semasko M, Skaudzius R, Beganskiene A, Kareiva A (2015). Adv Powder Technol 26:1287–1293

    Article  Google Scholar 

  20. Nasiri-Tabrizi B, Pingguan-Murphy B, Basirun WJ, Baradaran S (2016). J Industr Eng Chem 33:316–325

    Article  Google Scholar 

  21. Andrade FAC, de Oliveira Vercik LC, Monteiro FJ, da Silva Rigo EC (2016). Ceram Int 42:2271–2280

    Article  Google Scholar 

  22. Boughzala K, Bouzouita K (2015). Comptes Rendus Chim 18:858–866

    Article  Google Scholar 

  23. Ciobanu G, Bargan AM, Luca C (2015). Ceram Int 41:12192–12201

    Article  Google Scholar 

  24. Rosticher C, Viana B, Maldiney T, Richard C, Chaneac C (2016). J Lumin 170:460–466

    Article  Google Scholar 

  25. Kolmas J, Krukowski S, Laskus A, Jurkitewicz M (2016). Ceram Int 42:2472–2487

    Article  Google Scholar 

  26. Liu ZG, Wang Q, Yao SW, Yang LR, Yu SW, Feng XX, Li FF (2014). Ceram Int 40:2613–2617

    Article  Google Scholar 

  27. Syamchand SS, Sony G (2015). Michrochim Acta 182:1567–1589

    Article  Google Scholar 

  28. Doat A, Fanjul M, Pelle F, Hollande E, Lebugle A (2003). Biomater 24:3365–3371

    Article  Google Scholar 

  29. Diamente PR, Raudsepp M, van Veggel FCJM (2007). Adv Funct Mater 17:363–368

    Article  Google Scholar 

  30. Teng X, Liu Y, Liu Y, Hu Y, He H, Zhuang W (2010). J Lumin 130:851–854

    Article  Google Scholar 

  31. Katelnikovas A, Plewa J, Sakirzanovas S, Dutczak D, Enseling D, Baur F, Winkler H, Kareiva A, Jüstel T (2012). J Mater Chem 22:22126–22134

    Article  Google Scholar 

  32. Chen F, Huang P, Zhu YJ, Wu J, Cui DX (2012). Biomater 33:6447–6455

    Article  Google Scholar 

  33. Soares MRN, Rino L, Costa FM, Monteiro T (2013). Phys Status Solidi B 250:815–820

    Article  Google Scholar 

  34. Skaudzius R, Katelnikovas A, Enseling D, Kareiva A, Juestel T (2014). J Lumin 147:290–294

    Article  Google Scholar 

  35. Pereira PFS, Matos MG, Ferreira CMA, De Faria EH, Calefi PS, Rocha LA, Ciuffi KJ, Nassar EJ (2014). J Lumin 146:394–397

    Article  Google Scholar 

  36. Wang Z, Li Y, Liu X, Wei X, Chen Y, Zhou F, Wang Y (2014). Mater Res Bull 59:295–299

    Article  Google Scholar 

  37. Pavasaryte L, Lopez BJ, Kareiva A (2015). Mendeleev Commun 25:384–385

    Article  Google Scholar 

  38. Skaudzius R, Juestel T, Kareiva A (2016). Mater Chem Phys 170:229–238

    Article  Google Scholar 

  39. Doat A, Pelle F, Gardant N, Lebugle A (2004). J Solid State Chem 177:1179–1187

    Article  Google Scholar 

  40. Graeve OA, Kanakala R, Madadi A, Williams BC, Glass KC (2010). Biomater 31:4259–4267

    Article  Google Scholar 

  41. Wagner DE, Eisenmann KM, Nestor-Kalinoski AL, Bhaduri SB (2013). Acta Biomaterialia 9:8422–8432

    Article  Google Scholar 

  42. Yang P, Quan Z, Li C, Kang X, Lian H, Lin J (2008). Biomater 29:4341–4347

    Article  Google Scholar 

  43. Bogdanoviciene I, Beganskiene A, Tõnsuaadu K, Glaser J, Meyer H-J, Kareiva A (2006). Mater Res Bull 41:1754

    Article  Google Scholar 

  44. Bogdanoviciene I, Misevicius M, Kareiva A, Gross KA, Yang TCK, Pan G-T, Fang H-W, Yang J-C (2013). Adv Sci Technol 86:22–27

    Article  Google Scholar 

  45. Liu Q, Huang SS, Matinlinna JP, Chen ZF, Pan HB (2013) Biomed Res Int, Art. No. 929748.

  46. Hench LL (2013) An Introduction to Bioceramics, Second Edition. Imperial College Press, London

    Book  Google Scholar 

  47. Bogdanoviciene I, Beganskiene A, Kareiva A, Juskenas R, Selskis A, Ramanauskas R, Tõnsuaadu K, Mikli V (2010). Chemija 21:98–105

    Google Scholar 

  48. Chen J, Wang Y, Chen X, Ren L, Lai C, He W, Zhang Q (2011). Mater Lett 65:1923–1926

    Article  Google Scholar 

  49. Prichodko A, Jonauske V, Cepenko M, Beganskiene A, Kareiva A (2014). Adv Sci Technol 91:13–18

    Article  Google Scholar 

  50. Pavasaryte L, Lopez BJ, Kareiva A (2015) Proceedings of 3rd International Conference on Photonics, Optics and Laser Technology „Photoptics 2015“ Berlin, Germany, March 12-14, Vol. 2, 165-171.

  51. Lou Z, Hao J, Cocivera M (2002). J Phys D: Appl Phys 35:2841–2845

    Article  Google Scholar 

  52. Hao J, Studenikin SA, Cocivera M (2001). J Lumin 93:313–319

    Article  Google Scholar 

  53. Devaraju MK, Yin S, Sato T (2009) Eur J Inorg Chem:4441–4445.

  54. Cicillini SA, Pires AM, Serra OA (2004). J All Compd 374:169–172

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant KALFOS (No. LJB-2/2015) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aivaras Kareiva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prichodko, A., Enrichi, F., Stankeviciute, Z. et al. Study of Eu3+ and Tm3+ substitution effects in sol–gel fabricated calcium hydroxyapatite. J Sol-Gel Sci Technol 81, 261–267 (2017). https://doi.org/10.1007/s10971-016-4194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4194-x

Keywords

Navigation