Skip to main content
Log in

Halloysite nanotubes/pluronic nanocomposites for waterlogged archeological wood: thermal stability and X-ray microtomography

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Filling a polymer with halloysite nanotubes is considered a promising strategy to generate nanocomposites with tailored physicochemical properties. We have focused our attention on pluronic block copolymer/halloysite nanocomposites prepared by melt blending. The effect of composition on thermal stability and polymer crystallinity was investigated by thermogravimetry and differential scanning calorimetry. Electron microscopy was used to monitor the nanoparticle distribution in the polymeric matrix. The pluronic thermal stability is reduced by the clay nanoparticles. Concerning the polymer crystallinity, it is slightly decreased even if the melting temperature is lowered by halloysite. Furthermore, waterlogged archeological wood samples are consolidated using the nanotubes/pluronic nanocomposite, and the penetration of the nanocomposites into the lignin channels is confirmed by measurements based on X-ray computed microtomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lvov Y, Aerov A, Fakhrullin R. Clay nanotube encapsulation for functional biocomposites. Adv Colloid Interface Sci. 2014;207:189–98.

    CAS  PubMed  Google Scholar 

  2. Cataldo VA, Cavallaro G, Lazzara G, Milioto S, Parisi F. Coffee grounds as filler for pectin: green composites with competitive performances dependent on the UV irradiation. Carbohydr Polym. 2017;170:198–205.

    CAS  PubMed  Google Scholar 

  3. Cavallaro G, Lazzara G, Milioto S, Parisi F, Ruisi F. Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose. 2017;24:3367–76.

    CAS  Google Scholar 

  4. Baek B-S, Park J-W, Lee B-H, Kim H-J. Development and application of green composites: using coffee ground and bamboo flour. J Polym Environ. 2013;21:702–9.

    CAS  Google Scholar 

  5. Hatakeyama T, Yamashita S, Hatakeyama H. Thermal properties of lignin-based polycaprolactones. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09161-0.

    Article  Google Scholar 

  6. Athanasoulia I-G, Giachalis K, Todorova N, Giannakopoulou T, Tarantili P, Trapalis C. Preparation of hybrid composites of PLLA using GO/PEG masterbatch and their characterization. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09227-z.

    Article  Google Scholar 

  7. Pires OAB, Alarcon RT, Gaglieri C, da Silva-Filho LC, Bannach G. Synthesis and characterization of a biopolymer of glycerol and macadamia oil. J Therm Anal Calorim. 2019;137:161–70.

    CAS  Google Scholar 

  8. Qu D, Gao H, Wang Q, Bai Y, Li N. Non-isothermal crystallization kinetics of bio-based poly(butylene-co-isosorbide succinate) (PBIS). J Therm Anal Calorim. 2020;139:1931–9.

    CAS  Google Scholar 

  9. Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF. Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale. 2016;8:7257–71.

    CAS  PubMed  Google Scholar 

  10. Lvov Y, Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci. 2013;38:1690–719.

    CAS  Google Scholar 

  11. Cavallaro G, Lazzara G, Milioto S, Parisi F, Sparacino V. Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polym Degrad Stab. 2015;120:220–5.

    CAS  Google Scholar 

  12. Abdullayev E, Lvov Y. Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B. 2013;1:2894–903.

    CAS  PubMed  Google Scholar 

  13. Makaremi M, Pasbakhsh P, Cavallaro G, Lazzara G, Aw YK, Lee SM, et al. Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl Mater Interfaces. 2017;9:17476–88.

    CAS  PubMed  Google Scholar 

  14. Soares NFF, Moreira FKV, Fialho TL, Melo NR. Triclosan-based antibacterial paper reinforced with nano-montmorillonite: a model nanocomposite for the development of new active packaging. Polym Advan Technol. 2012;23:901–8.

    CAS  Google Scholar 

  15. Tankhiwale R, Bajpai SK. Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloid Surf B. 2009;69:164–8.

    CAS  Google Scholar 

  16. Reinholdt MX, Kirkpatrick RJ, Pinnavaia TJ. Montmorillonite–poly(ethylene oxide) nanocomposites: interlayer alkali metal behavior. J Phys Chem B. 2005;109:16296–303.

    CAS  PubMed  Google Scholar 

  17. Jung DH, Cho SY, Peck DH, Shin DR, Kim JS. Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell. J Power Sources. 2003;118:205–11.

    CAS  Google Scholar 

  18. Pasbakhsh P, Churchman GJ, Keeling JL. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci. 2013;74:47–57.

    CAS  Google Scholar 

  19. Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim. 2014;117:1293–8.

    CAS  Google Scholar 

  20. Yamamoto K, Otsuka H, Wada S-I, Sohn D, Takahara A. Transparent polymer nanohybrid prepared by in situ synthesis of aluminosilicate nanofibers in poly(vinyl alcohol) solution. Soft Matter. 2005;1:372–7.

    CAS  PubMed  Google Scholar 

  21. Dintcheva NT, Arrigo R, Catalanotto F, Morici E. Improvement of the photo-stability of polystyrene-block-polybutadiene-block-polystyrene through carbon nanotubes. Polym Degrad Stab. 2015;118:24–32.

    CAS  Google Scholar 

  22. Dintcheva NT, Al-Malaika S, Morici E. Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites. Polym Degrad Stab. 2015;122:88–101.

    CAS  Google Scholar 

  23. Dintcheva NT, Al-Malaika S, Arrigo R, Morici E. Novel strategic approach for the thermo- and photo-oxidative stabilization of polyolefin/clay nanocomposites. Polym Degrad Stab. 2017;145:41–51.

    CAS  Google Scholar 

  24. Blanco I, Abate L, Bottino FA, Bottino P. Thermal behaviour of a series of novel aliphatic bridged polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites: the influence of the bridge length on the resistance to thermal degradation. Polym Degrad Stab. 2014;102:132–7.

    CAS  Google Scholar 

  25. Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Effects of halloysite content on the thermo-mechanical performances of composite bioplastics. Appl Clay Sci. 2020. https://doi.org/10.1016/j.clay.2019.105416

    Article  Google Scholar 

  26. Walsh-Korb Z, Avérous L. Recent developments in the conservation of materials properties of historical wood. Prog Mater Sci. 2019;102:167–221.

    Google Scholar 

  27. Sandström M, Jalilehvand F, Damian E, Fors Y, Gelius U, Jones M, et al. Sulfur accumulation in the timbers of King Henry VIII’s warship Mary Rose : a pathway in the sulfur cycle of conservation concern. Proc Natl Acad Sci U S A. 2005;102:14165.

    PubMed  PubMed Central  Google Scholar 

  28. Poggi G, Toccafondi N, Melita LN, Knowles JC, Bozec L, Giorgi R, et al. Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Appl Phys A. 2014;114:685–93.

    CAS  Google Scholar 

  29. Giorgi R, Dei L, Ceccato M, Schettino C, Baglioni P. Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir. 2002;18:8198–203.

    CAS  Google Scholar 

  30. Dedic D, Iversen T, Ek M. Cellulose degradation in the Vasa: the role of acids and rust. Stud Conserv. 2013;58:308–13.

    CAS  Google Scholar 

  31. Braem AD, Prieve DC, Tilton RD. Electrostatically tunable coadsorption of sodium dodecyl sulfate and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer to Silica. Langmuir. 2001;17:883–90.

    CAS  Google Scholar 

  32. Mejia J, Tichelaar F, Saout C, Toussaint O, Masereel B, Mekhalif Z, et al. Effects of the dispersion methods in Pluronic F108 on the size and the surface composition of MWCNTs and their implications in toxicology assessment. J Nanopart Res. 2011;13:655–67.

    CAS  Google Scholar 

  33. Dintcheva NT, Catalano G, Arrigo R, Morici E, Cavallaro G, Lazzara G, et al. Pluronic nanoparticles as anti-oxidant carriers for polymers. Polym Degrad Stab. 2016;134:194–201.

    CAS  Google Scholar 

  34. Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial-Hermida I, Taboada P, et al. PEO–PPO–PEO carriers for rAAV-mediated transduction of human articular chondrocytes in vitro and in a human osteochondral defect model. ACS Appl Mater Interfaces. 2016;8:20600–13.

    CAS  PubMed  Google Scholar 

  35. Álvarez-Ramírez JG, Fernández VVA, Macías ER, Rharbi Y, Taboada P, Gámez-Corrales R, et al. Phase behavior of the Pluronic P103/water system in the dilute and semi-dilute regimes. J Colloid Interface Sci. 2009;333:655–62.

    PubMed  Google Scholar 

  36. Cavallaro G, Lazzara G, Massaro M, Milioto S, Noto R, Parisi F, et al. Biocompatible poly(N-isopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. J Phys Chem C. 2015;119:8944–51.

    CAS  Google Scholar 

  37. Liu M, Wu C, Jiao Y, Xiong S, Zhou C. Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B. 2013;1:2078–89.

    CAS  PubMed  Google Scholar 

  38. Lvov YM, Shchukin DG, Mohwald H, Price RR. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano. 2008;2:814–20.

    CAS  PubMed  Google Scholar 

  39. Zhao Y, Abdullayev E, Vasiliev A, Lvov Y. Halloysite nanotubule clay for efficient water purification. J Colloid Interface Sci. 2013;406:121–9.

    CAS  PubMed  Google Scholar 

  40. Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 2010;59:574–82.

    CAS  Google Scholar 

  41. Gorrasi G. Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym. 2015;127:47–53.

    CAS  PubMed  Google Scholar 

  42. Bertolino V, Cavallaro G, Lazzara G, Milioto S, Parisi F. Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media. Langmuir. 2017;33:3317–23.

    CAS  PubMed  Google Scholar 

  43. Cavallaro G, Lazzara G, Milioto S, Palmisano G, Parisi F. Halloysite nanotube with fluorinated lumen: non-foaming nanocontainer for storage and controlled release of oxygen in aqueous media. J Colloid Interface Sci. 2014;417:66–71.

    CAS  PubMed  Google Scholar 

  44. Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes with fluorinated cavity: an innovative consolidant for paper treatment. Clay Miner. 2016;51:445.

    CAS  Google Scholar 

  45. Cavallaro G, Danilushkina AA, Evtugyn VG, Lazzara G, Milioto S, Parisi F, et al. Halloysite nanotubes: controlled access and release by smart gates. Nanomaterials. 2017;7:199.

    PubMed Central  Google Scholar 

  46. Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes for cleaning, consolidation and protection. Chem Rec. 2018;18:940–9.

    CAS  PubMed  Google Scholar 

  47. Jiang W-T, Chang P-H, Tsai Y, Li Z. Halloysite nanotubes as a carrier for the uptake of selected pharmaceuticals. Microporous Mesoporous Mater. 2016;220:298–307.

    CAS  Google Scholar 

  48. Tan D, Yuan P, Annabi-Bergaya F, Yu H, Liu D, Liu H, et al. Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous Mesoporous Mater. 2013;179:89–98.

    CAS  Google Scholar 

  49. Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117:1–9.

    CAS  Google Scholar 

  50. Massaro M, Campofelice A, Colletti CG, Lazzara G, Noto R, Riela S. Functionalized halloysite nanotubes: efficient carrier systems for antifungine drugs. Appl Clay Sci. 2018;160:186–92.

    CAS  Google Scholar 

  51. Massaro M, Riela S. Organo-clay nanomaterials based on halloysite and cyclodextrin as carriers for polyphenolic compounds. J Funct Biomater. 2018. https://doi.org/10.3390/jfb9040061.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhao M, Liu P. Adsorption behavior of methylene blue on halloysite nanotubes. Microporous Mesoporous Mater. 2008;112:419–24.

    CAS  Google Scholar 

  53. Sadjadi S, Heravi MM, Malmir M. Pd@HNTs-CDNS-g-C3N4: a novel heterogeneous catalyst for promoting ligand and copper-free Sonogashira and Heck coupling reactions, benefits from halloysite and cyclodextrin chemistry and g-C3N4 contribution to suppress Pd leaching. Carbohydr Polym. 2018;186:25–34.

    CAS  PubMed  Google Scholar 

  54. Sadjadi S, Lazzara G, Malmir M, Heravi MM. Pd nanoparticles immobilized on the poly-dopamine decorated halloysite nanotubes hybridized with N-doped porous carbon monolayer: a versatile catalyst for promoting Pd catalyzed reactions. J Catal. 2018;366:245–57.

    CAS  Google Scholar 

  55. Liu M, Jia Z, Liu F, Jia D, Guo B. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci. 2010;350:186–93.

    CAS  PubMed  Google Scholar 

  56. Bertolino V, Cavallaro G, Lazzara G, Merli M, Milioto S, Parisi F, et al. Effect of the biopolymer charge and the nanoclay morphology on nanocomposite materials. Ind Eng Chem Res. 2016;55:7373–80.

    CAS  Google Scholar 

  57. Cavallaro G, Lazzara G, Milioto S. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab. 2013;98:2529–36.

    CAS  Google Scholar 

  58. Cavallaro G, Milioto S, Parisi F, Lazzara G. Halloysite nanotubes loaded with calcium hydroxide: alkaline fillers for the deacidification of waterlogged archeological woods. ACS Appl Mater Interfaces. 2018;10:27355–64.

    CAS  PubMed  Google Scholar 

  59. Parisi F, Lazzara G, Merli M, Milioto S, Princivalle F. Simultaneous removal and recovery of metal ions and dyes from wastewater through montmorillonite clay mineral. Nanomaterials. 2019;9:1699.

    CAS  PubMed Central  Google Scholar 

  60. Sciascia L, Casella S, Cavallaro G, Lazzara G, Milioto S, Princivalle F, et al. Olive mill wastewaters decontamination based on organo-nano-clay composites. Ceram Int. 2019;45:2751–9.

    CAS  Google Scholar 

  61. Polacci M, Baker DR, Mancini L, Tromba G, Zanini F. Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett. 2006. https://doi.org/10.1029/2006GL026241.

    Article  Google Scholar 

  62. Zandomeneghi D, Voltolini M, Mancini L, Brun F, Dreossi D, Polacci M. Quantitative analysis of X-ray microtomography images of geomaterials: application to volcanic rocks. Geosphere. 2010;6:793–804.

    Google Scholar 

  63. Du M, Guo B, Jia D. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J. 2006;42:1362–9.

    CAS  Google Scholar 

  64. Cavallaro G, Lisi R, Lazzara G, Milioto S. Polyethylene glycol/clay nanotubes composites. J Therm Anal Calorim. 2013;112:383–9.

    CAS  Google Scholar 

  65. Stefanescu EA, Daranga C, Stefanescu C. Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles. Materials. 2009;2:2095–153.

    CAS  PubMed Central  Google Scholar 

  66. Cavallaro G, Lazzara G, Lisuzzo L, Milioto S, Parisi F. Filling of mater-bi with nanoclays to enhance the biofilm rigidity. J Funct Biomater. 2018. https://doi.org/10.3390/jfb9040060.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Messersmith PB, Giannelis EP. Synthesis and barrier properties of poly(ε-caprolactone)-layered silicate nanocomposites. J Polym Sci Part A Polym Chem. 1995;33:1047–57.

    CAS  Google Scholar 

  68. Babiński L, Izdebska-Mucha D, Waliszewska B. Evaluation of the state of preservation of waterlogged archaeological wood based on its physical properties: basic density vs. wood substance density. J Archaeol Sci. 2014;46:372–83.

    Google Scholar 

  69. Giorgi R, Chelazzi D, Baglioni P. Nanoparticles of calcium hydroxide for wood conservation. The deacidification of the Vasa warship. Langmuir. 2005;21:10743–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Progetto di ricerca e sviluppo “AGM for CuHe” (ARS01_00697) and University of Palermo. The TomoLab team at Elettra is acknowledged for the technical support during measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Parisi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisi, F., Bernardini, F., Cavallaro, G. et al. Halloysite nanotubes/pluronic nanocomposites for waterlogged archeological wood: thermal stability and X-ray microtomography. J Therm Anal Calorim 141, 981–989 (2020). https://doi.org/10.1007/s10973-020-09637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09637-4

Keywords

Navigation