Skip to main content
Log in

Correlation between structural and giant magnetoresistance properties of Fe–Ag nanogranular films

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Fe x Ag1−x granular thin-films, with the atomic Fe concentration, x, ranging from 0 up to 0.5, were deposited by dc magnetron co-sputtering. The giant magnetoresistance (GMR) intensity is maximum at x I  = 0.32, while the maximum of GMR efficiency, γ, i.e., the change of GMR intensity for a unit change of reduced squared magnetization, is observed at x γ = 0.26. Owing to the spin-dependent scattering features, the GMR intensity and γ depend on both the concentration and the arrangement of the magnetic material. Therefore, to explain the difference between x I and x γ and to understand how the structural properties affect the magnetoresistive behaviour, we performed magnetization, Mössbauer and X-ray diffraction measurements as a function of x. X-ray data indicate that the granular films exhibit three different regimes: for x < 0.2, they can be described as a Fe–Ag solid solution; for 0.2 < x < 0.32 the Fe–Ag solid solution is still observed and very small Fe precipitates are found; finally, for x > 0.32, a Fe–Ag saturated solid solution is detected, containing bcc Fe clusters whose size is about 10 nm. Differently, for all the concentrations, magnetization data show the presence of Fe precipitates, whose size increases with x, and the Mössbauer investigation confirms this picture. We find that the samples grown at x = x γ display the finest Fe dispersion within the Ag matrix, as the Fe–Ag solid solution is nearly at saturation and the Fe cluster size is of the order of a few nanometers; this arrangement possibly maximizes the magnetic/non-magnetic interface extension thus enhancing the GMR efficiency. If x is slightly increased, the increase in total Fe content compensates the GMR efficiency reduction, so the GMR intensity maximum is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allia P, Knobel M, Tiberto P, Vinai F (1995) Magnetic properties and giant magnetoresistance of melt spun granular CuCo alloys. Phys Rev B 52(100):15398

    Article  CAS  Google Scholar 

  • Allia P, Coisson M, Selvaggini V, Tiberto P, Vinai F (2001) Observation of isotropic gmr in paramagnetic Au80Fe20. Phys Rev B 63(100):180404

    Article  Google Scholar 

  • Asano Y, Oguri A, Inoue J, Maekawa S (1994) Giant magnetoresistance in magnetic granular alloys. Phys Rev B 49(18):12831–12834

    Article  CAS  Google Scholar 

  • Baibich MN, Broto JM, Fert A, NguyenVan Dau F, Petroff F, Eitenne P, Friederich A, Chazelas J (1988) Giant magnetoresistance of Fe/Cr magnetic superlattices. Phys Rev Lett 61(21):2472

    Article  CAS  Google Scholar 

  • Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hutten A, Thomas G (1992) Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett 68(25):3745

    Article  CAS  Google Scholar 

  • Bisero D, Angeli E, Pizzo L, Spizzo F, Vavassori P, Ronconi F (2003) Transport properties and magnetic disorder/order transition in Fe x Ag100−x films. J Magn Magn Mater 262(100):84

    Article  CAS  Google Scholar 

  • Csontos M, Balogh J, Kapts D, Kiss LF, Kovcs A, Mihly G (2006) Magnetic and transport properties of Fe–Ag granular multilayers. Phys Rev B 73(18):184412

    Article  Google Scholar 

  • Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instr Meth B 9(100):344

    Article  Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle system. In Advances in Chemical Physics, vol XCVIII. John Wiley and Sons, Inc., Hoboken, p 283

  • Ferrari EF, da Silva FCS, Knobel M (1997) Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys Rev B 56(10):6086–6093

    Google Scholar 

  • Hansen M (1958) Constitution of binary alloys. McGraw-Hill book Co, New York

    Google Scholar 

  • Hickey BJ, Howson MA, Musa SO, Wiser N (1995) Giant magnetoresistance for superparamagnetic particles: melt-spun granular CuCo. Phys Rev B 51(1):667–669

    Article  CAS  Google Scholar 

  • Hume-Rothery William, Raynor GV (1962) The structure of metals and alloys. The Institute of metals, London

    Google Scholar 

  • Kataoka N, Sumiyama K, Nakamura Y (1985) Magnetic properties of high-concentration Fe–Ag alloys produced by vapor quenching. J Phys F Met Phys 15(100):1405

    Article  CAS  Google Scholar 

  • Kataoka N, Sumiyama K, Nakamura Y (1988) Non-equilibrium crystalline Fe–Ag alloys vapour-quenched on liquid-nitrogen-cooled substrates. J Phys F Met Phys 18(100):1049

    Article  CAS  Google Scholar 

  • Kechrakos D, Trohidou N (2000) Interplay of dipolar interactions and grain-size distribution in the giant magnetoresistance of granular metals. Phys Rev B 62(6):3941

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for x-ray particle size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  • Rixecker G (2002) The difficulty of isolating boundary components in the Mössbauer spectra of ball-milled materials: iron and silver-iron alloys. Sol State Commun 122(100):299

    Article  CAS  Google Scholar 

  • Roy MK, Nambissan PMG, Verma HC (2002) Structural, thermal stability and defect studies of Fe–Ag alloy prepared by electrodeposition technique. J Alloys Com 345(100):183

    Article  CAS  Google Scholar 

  • Shenoy GK, Wagner FE (1978) Mössbauer isomer shift. North-Holland, Amsterdam

    Google Scholar 

  • Spizzo F, Angeli E, Bisero D, Da Re A, Ronconi F, Vavassori P (2004) Mössbauer investigation of sputtered Fe x Ag100-x films. J Magn Magn Mater 272(100):1169

    Article  Google Scholar 

  • Wan H, Tsoukatos A, Hadjipanayis GC (1994) Direct evidence of phase separation in as-deposited Fe(Co)-Ag films with giant magnetoresistance. Phys Rev B 49(2):1524

    Article  CAS  Google Scholar 

  • Wang JQ, Xiao G (1994) Transition-metal granular solids: microstructure, magnetic properties and giant magnetoresistance. Phys Rev B 49(6):3982

    Article  CAS  Google Scholar 

  • Wang JQ, Xiao G (1995) Large finite-size effect of giant magnetoresistance in magnetic granular thin films. Phys Rev B 51(9):5863

    Article  CAS  Google Scholar 

  • Wood R (2009) Future hard disk drive systems. J Magn Magn Mater 321(100):555

    Article  CAS  Google Scholar 

  • Xiao G, Liou SH, Levy A, Taylor JN, Chien CL (1986) Magnetic relaxation in Fe−SiO2 granular films. Phys Rev B 34(11):7573

    Article  CAS  Google Scholar 

  • Xiao JQ, Jiang JS, Chien CL (1992a) Giant magnetoresistance in the granular Co-Ag system. Phys Rev B 46(14):9266

    Article  CAS  Google Scholar 

  • Xiao JQ, Jiang JS, Chien CL (1992b) Giant magnetoresistance in nonmultilayer magnetic system. Phys Rev Lett 68(25):3749

    Article  CAS  Google Scholar 

  • Xiao G, Wang JQ, Xiong P (1993) Giant magnetoresistance and its evolution in the granular Fe x Ag100−x system. Appl Phys Lett 62(100):420

    Article  CAS  Google Scholar 

  • Yamagishi Y, Honda S, Inoue J, Itoh H (2010) Numerical simulation of giant magnetoresistance in magnetic multilayers and granular films. Phys Rev B 81(5):054445

    Article  Google Scholar 

  • Zhang S, Levy PM (1993) Conductivity and magnetoresistance in magnetic granular films. J Appl Phys 73(10):5315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Italian Ministry of University and Research for supporting this research in the frame of the project ‘Production, characterization and modelling of nanogranular films with innovations in the magnetic, magnetoresistive or magnetostrictive properties’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tamisari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamisari, M., Spizzo, F., Sacerdoti, M. et al. Correlation between structural and giant magnetoresistance properties of Fe–Ag nanogranular films. J Nanopart Res 13, 5203–5210 (2011). https://doi.org/10.1007/s11051-011-0505-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0505-x

Keywords

Navigation