Skip to main content
Log in

Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report an optical study of Tb3+-doped Y2O3 nanocrystals synthesized by Pechini-type sol–gel method. The particles are investigated in terms of size and morphology by means of X-ray diffraction and transmission electron microscopy analysis. It is shown how the simple Pechini method allows for the growth of monocrystalline nanoparticles with a volume-weighted average size of about 30 nm. The optical properties of Tb3+ in the host lattice are studied in terms of PL, PLE, and lifetimes. Moreover, a correlation between the type of decay curves, the emission and excitation bands' shapes, and the site location of the emitting Tb3+ in the host material Y2O3 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anh TK, Benalloul P, Barthou C, Giang LTK, Vu N, Minh LQ (2007) Luminescence, energy transfer and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+,  Tm3+,  Er3+ and Yb3+ ions. J Nanomater 2007(Article ID 48247):1–10. doi:10.1155/2007/48247

  • Benedetti A, Polizzi S, Riello P, Battisti AD, Maldotti A (1991) X-ray diffraction characterization of iridium dioxide electrocatalysts. J Mater Chem 1(4):511–515. doi:10.1039/JM9910100511

    Article  Google Scholar 

  • Bhargava RN, Chhabra V, Kulkarni B, Veliadis JV (1998) Transformation of deep impurities to shallow impurities by quantum confinement. Phys Status Solidi 210:621–629. doi:10.1002/(SICI)1521-3951(199812)210:2<621::AID-PSSB621>3.0.CO;2-4

    Google Scholar 

  • Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  • Butler KH (1980) Fluorescent lamp phosphors. Pennsylvania State University Press, University Park

    Google Scholar 

  • Chen XY, Zhuang HZ, Liu GK, Li S, Niedbala R (2003) Confinement on energy transfer between luminescent centers in nanocrystals. J Appl Phys 94:5559–5565. doi:10.1063/1.1614865

    Article  CAS  Google Scholar 

  • Cuif JP, Rohart E, Macadiere P, Bauregard C, Suda E, Pacaud B, Imanaka N, Masui T, Tamura S (2004) In: Adachi G, Imanaka N, Kang Z (eds) Binary rare earth oxides, chap 9. Kluwer, New York

  • Das GK, Tan TTY (2008) Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes. J Phys Chem C 12(30):11211–11217. doi:10.1021/jp802076n

    Article  Google Scholar 

  • Enrichi F (2008) Luminescent amine-functionalized or erbium-doped silica spheres for biological applications. Ann NY Acad Sci 1130(1):262–266. doi:10.1196/annals.1430.030

    Article  CAS  Google Scholar 

  • Enrichi F, Trave E, Bersani M (2008) Acid synthesis of luminescent amine-functionalized or erbium-doped silica spheres for biological applications. J Fluoresc 18:507–511. doi:10.1007/s10895-007-0292-z

    Article  CAS  Google Scholar 

  • Enrichi F, Riccò R, Meneghello A, Pierobon R, Cretaio E, Marinello F, Schiavuta P, Parma A, Riello P, Benedetti A (2010a) Investigation of luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres for DNA microarray labelling. Opt Mater 32(12):1652–1658. doi:10.1016/j.optmat.2010.04.026

    Article  CAS  Google Scholar 

  • Enrichi F, Riccò R, Scopece P, Parma A, Mazaheri A, Riello P, Benedetti A (2010b) Comparison of Eu(NO3)3 and Eu(acac)3 precursors for doping luminescent silica nanoparticles. J Nanopart Res 12:1925–1931. doi:10.1007/s110 51-009-9756-1

    Article  CAS  Google Scholar 

  • Falcomer D, Speghini A, Ibba G, Enzo S, Cannas C, Musinu A, Bettinelli M (2007) Morphology and luminescence of nanocrystalline Nb2O5 doped with Eu3+. J Nanomater 2007(Article ID 94975):1–5. doi:10.1155/2007/94975

  • Flores-Gonzalez MA, Ledoux G, Roux S, Lebbou K, Perriat P, Tillement O (2005) Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method. J Solid State Chem 178:989–997. doi:10.1016/j.jssc.2004.10.029

    Article  CAS  Google Scholar 

  • Gwak JH, Park SH, Jang JE, Lee SJ, Jung JE, Kim JM (2000) Synthesis and modification of red oxide phosphors for low voltage excitation. J Vac Sci Technol B 18:1101–1105. doi:10.1116/1.591338

    Article  CAS  Google Scholar 

  • Huang S, Lou L (1990) Concentration dependence of sensitizer fluorescence intensity in energy transfer. Chin J Lumin 11(1):36–41. ISSN:1000-7032.0.1990-01-000

    Google Scholar 

  • Jiang D, Chong CN (2008) Anti-counterfeiting using phosphor PUF. In: 2nd International conference on anti-counterfeiting, security and identification. ASID 2008, pp 59–62

  • Kakihana M, Yoshimura M (1999) Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull Chem Soc Jpn 72(7):1427–1443

    Article  CAS  Google Scholar 

  • Kim GC, Park HL, Kim TW (2001) Emission color tuning from blue to green through cross-relaxation in heavily Tb3+-doped YAlO3. Mater Res Bull 36:1603–1608. doi:10.1016/S0025-5408(01)00556-6

    Article  CAS  Google Scholar 

  • Lakowicz JR (1999) Principle of fluorescence spectroscopy, 3rd edn. Kluwer Academic (Plenum Publisher), New York

    Google Scholar 

  • Leavitt RP, Gruber JB, Chang NC, Morrison CA (1982) Optical spectra, energy levels, and crystal-field analysis of tripositive rare-earth ions in Y2O3. II. Non-Kramers ions in C 2 sites. J Chem Phys 76(10):4775–4788. doi:10.1063/1.442796

    Article  CAS  Google Scholar 

  • Li D, Lu SZ, Wang HY, Chen BJ, E SL, Zhang JH, Huang SH (2001) Concentration quenching of Tb3+ emissions in Y2O2S nanocrystals. Chin J Lumin 22(3):227–231. ISSN:1000-7032.0.2001-03-004

    Google Scholar 

  • Lin J, Yu M, Lin CK, Liu XM (2007) Multiform oxide optical materials via the versatile Pechini-type sol–gel process: synthesis and characteristics. J Phys Chem C 111:5835–5845. doi:10.1021/jp070062c

    Article  CAS  Google Scholar 

  • Liu Z, Yu L, Wang Q, Tao Y, Yang H (2011) Effect of Eu,Tb codoping on the luminescent properties of Y2O3 nanorods. J Lumin 131:12–16. doi:10.1016/j.jlumin.2010.08.012

    Article  CAS  Google Scholar 

  • Lü Q, Wu Y, Ding L, Zu G, Li A, Zhao Y, Cui H (2010) Visible upconversion luminescence of Tb3+ ions in Y2O3 nanoparticles induced by a near-infrared femtosecond laser. J Alloys Compd 496:488–493. doi:10.1016/j.jallcom.2010.02.085

    Article  Google Scholar 

  • Mahalingam V, Mangiarini F, Vetrone F, Venkatramu V, Bettinelli M, Speghini A, Capobianco J (2008) Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals. J Phys Chem C 112(46):17745–17749. doi:10.1021/jp8076479

    Article  CAS  Google Scholar 

  • Martín-Rodríguez R, Valiente R, Polizzi S, Bettinelli M, Speghini A, Piccinelli F (2009) Upconversion luminescence in nanocrystals of Gd3Ga5O12 and Y3Al5O12 doped with Tb3+-Yb3+ and Eu3+-Yb3+. J Phys Chem C 113(28):12195–12200. doi:10.1021/jp901711g

    Article  Google Scholar 

  • Mehta A, Thundat T, Barnes MD, Chhabra V, Bhargava R, Bartko AP, Dickson RM (2003) Size-correlated spectroscopy and imaging of rare-earth-doped nanocrystals. Appl Opt 42:2132–2139. doi:10.1364/AO.42.002132

    Article  CAS  Google Scholar 

  • Meng Q, Chen B, Xu W, Yang Y, Zhao X, Di W, Lu S, Wang X, Sun J, Cheng L, Yu T, Peng Y (2007) Size-dependent excitation spectra and energy transfer in Tb3+-doped Y2O3 nanocrystalline. J Appl Phys 102:093505-1. doi:10.1063/1.2803502

    Google Scholar 

  • Muenchausen RE, Jacobsohn LG, Bennett BL, McKigney EA, Smith JF, Valdez JA, Cooke DW (2007) Effects of Tb doping on the photoluminescence of Y2O3:Tb nanophosphors. J Lumin 126:838–842. doi:10.1016/j.jlumin.2006.12.004

    Article  CAS  Google Scholar 

  • Nigara Y (1968) Measurement of the optical constants of yttrium oxide. Jpn J Appl Phys 7:404–408. doi:10.1143/JJAP.7.404

    Article  CAS  Google Scholar 

  • Ou-Yang FP, Tang B (2003) Study on energy trasfer of Y2O2S:Tb nanocrystals. Rare Met Mater Eng 32(7):522–525

    CAS  Google Scholar 

  • Park JH, Back NG, Kwak MG, Jun BE, Choi BC, Moon BK, Jeong JH, Yi SS, Kim JB (2007) Synthesis and properties of luminescent Y2O3:Tb3+(5, 8, 12 wt.%) nanocrystals. Mater Sci Eng C 27:998–1001. doi:10.1016/j.msec.2006.08.012

    Article  CAS  Google Scholar 

  • Parma A, Freris I, Riello P, Enrichi F, Cristofori D, Benedetti A (2010) Structural and photoluminescence properties of ZrO2:Eu3+ @ SiO2 nanophosphors as a function of annealing temperature. J Lumin 130(12):2429–2436. doi:10.1016/j.jlumin.2010.08.007

    Article  CAS  Google Scholar 

  • Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent, US 3330697

  • Riello P, Bucella S, Brunelli D, Fossa F, Benedetti A, Trave E, Mazzoldi P (2006a) Reduction of concentration-induced luminescence quenching in Eu3+-doped nanoparticles embedded in silica. Opt Mater 28(11):1261–1265. doi:10.1016/j.optmat.2006.01.019

    Article  CAS  Google Scholar 

  • Riello P, Bucella S, Cristofori D, Benedetti A, Polloni R, Trave E, Mazzoldi P (2006b) Effect of the microstructure on concentration quenching in heavily doped Tb2O3-ZrO2 nanoparticles embedded in silica. Chem Phys Lett 431:326–331. doi:10.1016/j.cplett.2006.09.083

    Article  CAS  Google Scholar 

  • Saengkerdsub S, Im HJ, Willis C, Dai S (2004) Pechini-type in-situ polymerizable complex (IPC) method applied to the synthesis of Y2O3:Ln (Ln = Ce or Eu) nanocrystallites. J Mater Chem 14:1207–1211. doi:10.1039/b309606h

    Article  CAS  Google Scholar 

  • Silvestrini S, Riello P, Freris I, Cristofori D, Enrichi F, Benedetti A (2010) Structural and luminescence properties of europium(III)-doped zirconium carbonates and silica-supported Eu3+-doped zirconium carbonate nanoparticles. J Nanopart Res 12(3):993–1002. doi:10.1007/s11051-009-9655-5

    Article  Google Scholar 

  • Song H, Wang J (2006) Dependence of photoluminescent properties of cubic Y2O3:Tb3+ nanocrystals on particle size and temperature. J Lumin 18:220–226. doi:10.1016/j.jlumin.2005.08.016

    Article  Google Scholar 

  • Soo YL, Huang SW, Kao YH, Chhabra V, Kulkami B, Veliadis JVD, Bhargava RN (1999) Controlled agglomeration of Tb-doped Y2O3 nanocrystals studied by X-ray absorption fine structure, X-ray excited luminescence, and photoluminescence. Appl Phys Lett 75:2464–2466. doi:10.1063/1.125049

    Article  CAS  Google Scholar 

  • Sotiriou GA, Schneider M, Pratsinis SE (2011) Color-tunable nanophosphors by codoping flame-made Y2O3 with Tb and Eu. J Phys Chem C 115:1084–1089. doi:10.1021/jp106137u

    Article  CAS  Google Scholar 

  • Srikanth V, Sato A, Yoshimoto J, JH Kim TI (1994) Synthesis and crystal structure study of Y2O3 high-pressure polymorph. Cryst Res Technol 29(7):981–984. doi:10.1002/crat.2170290712

    Article  CAS  Google Scholar 

  • Tian Y, Qi XH, Wu XW, Hua RN, Chen BJ (2009) Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method. J Phys Chem C 113:10767–10772. doi:10.1021/jp901053q

    Article  CAS  Google Scholar 

  • Tomiki T, Tamashiro J, Tanahara Y, Yamada A, Fukutani H, Miyahara T, Kato H, Shin S, Ishigame M (1986) Optical spectra of Y2O3 single crystals in VUV. J Phys Soc Jpn 55:4543–4549. doi:10.1143/JPSJ.55.4543

    Article  CAS  Google Scholar 

  • van Schaik W, Blasse G (1992) Influence of defects on the luminescence quantum yield of Y1.94Eu0.06O3. Chem Mater 4:410–415. doi:10.1021/cm00020a033

    Article  Google Scholar 

  • Wakefied G, Holland E, Dobson PJ, Hutchison TL (2001) Luminescence properties of nanocrystalline Y2O3:Eu. Adv Mater 13:1557–1560. doi:10.1002/1521-4095(200110)13:20<1557::AID-ADMA1557>3.0.CO;2-W

    Article  Google Scholar 

  • Wang L, Shi L, Liao N, Jia H, Du P, Xi Z, Wang L, Jin D (2010) Photoluminescence properties of Y2O3:Tb3+ and YBO3:Tb3+ green phosphors synthesized by hydrothermal method. Mater Chem Phys 119:490–494. doi:10.1016/j.matchemphys.2009.10.002

    Article  CAS  Google Scholar 

  • Warren BE (1969) X-ray diffraction. Addison Wesley, Reading

    Google Scholar 

  • Wei X, Zhao J, Zhang W, Li Y, Yin M (2010) Cooperative energy transfer in Eu3+, Yb3+ codoped Y2O3 phosphor. J Rare Earths 28:166–170. doi:10.1016/S1002-0721(09)60073-9

    Article  CAS  Google Scholar 

  • Wickersheim KA, Lafever RA (1961) Infrared transmittance of crystalline yttrium oxide and related compounds. J Opt Soc Am 51:1147–1148. doi:10.1364/JOSA.51.001147

    Article  CAS  Google Scholar 

  • Wu YC, Garapon C, Bazzi R, Pillonnet A, Tillement O, Mugnier J (2007) Optical and fluorescent properties of Y2O3 solgel planar waveguides containing Tb3+ doped nanocrystals. Appl Phys A 87:697–704. doi:10.1007/s00339-007-3894-z

    Article  Google Scholar 

  • Zhang JC, Wang YH, Zhang ZY, Wang DY, Cl ZP, Sun YK (2007) The concentration quenching characteristics of 5D3-7F j and 5D4-7F j (j = 0–6) transitions of Tb3+ in YBO3:Tb3+ phosphor. Chin Sci Bull 52(16):2297–2300. doi:10.1007/s11434-007-0329-3

    Article  CAS  Google Scholar 

  • Zhang P, Navrotsky A, Guo B, Kennedy I, Clark AN, Lesher C, Liu Q (2008) Energetics of cubic and monoclinic yttrium oxide polymorphs: phase transitions, surface enthalpies, and stability at the nanoscale. J Phys Chem C 112:932–938. doi:10.1021/jp7102337

    Article  CAS  Google Scholar 

  • Zheng H, Gao D, Fu Z, Wang E, Lei Y, Tuan Y, Cui M (2011) Fluorescence enhancement of Ln3+ doped nanoparticles. J Lumin 131:423–428. doi:10.1016/j.jlumin.2010.09.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr T. Finotto for the XRD measurements and technical support. The research projects of CIVEN are fully financed by the Veneto Region Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Back.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Back, M., Massari, A., Boffelli, M. et al. Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. J Nanopart Res 14, 792 (2012). https://doi.org/10.1007/s11051-012-0792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0792-x

Keywords

Navigation