Skip to main content
Log in

Development of a gold-nanostructured surface for amperometric genosensors

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1–5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aoki H, Tao H (2005) Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. Analyst 130:1478–1482

    Article  CAS  Google Scholar 

  • Aoki H, Bühlmann P, Umezawa Y (2000) Electrochemical detection of a one-base mismatch in an oligonucleotide using ion-channel sensors with self-assembled PNA monolayers. Electroanalysis 12:1272–1276

    Article  CAS  Google Scholar 

  • Baldoli C, Falciola L, Licandro E, Maiorana S, Mussini P, Ramani P, Rigamonti C, Zinzalla G (2004) A new ferrocene conjugate of a tyrosine PNA monomer: synthesis and electrochemical properties. J Organomet Chem 689:4791–4802

    Article  CAS  Google Scholar 

  • Bin X, Sargent EH, Kelley SO (2010) Nanostructuring of sensors determines the efficiency of biomolecular capture. Anal Chem 82:5928–5931

    Article  CAS  Google Scholar 

  • Cai H, Xu C, He P, Fang YZ (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78–85

    Article  CAS  Google Scholar 

  • Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396:241–259

    Article  CAS  Google Scholar 

  • Carralero Sanz V, Luz Mena M, González-Cortés A, Yánez-Sedeno P, Pingarrón JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes. Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1–8

    Article  CAS  Google Scholar 

  • Castañeda MT, Alegret S, Merkoçi A (2007) Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis 19:743–753

    Article  Google Scholar 

  • Cederquist KB, Keating CD (2009) Curvature effects in DNA: Au nanoparticle conjugates. ACSNano 3:256–260

    CAS  Google Scholar 

  • D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, Spoto G (2010) Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens Bioel 25:2095–2100

    Article  Google Scholar 

  • Degefa TH, Kwak J (2008) Electrochemical impedance sensing of DNA at PNA self assembled monolayer. J Electroanal Chem 612:37–41

    Article  CAS  Google Scholar 

  • Ensafi AA, Taei M, Rahmani HR, Khayamian T (2011) Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode. Electrochim Acta 56:8176–8183

    Article  CAS  Google Scholar 

  • Erdem A (2007) Nanomaterial-based electrochemical DNA sensing strategies. Talanta 74:318–325

    Article  CAS  Google Scholar 

  • Fang Z, Kelley SO (2009) Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal Chem 81:612–617

    Article  CAS  Google Scholar 

  • Fang B, Jiao S, Li M, Qu Y, Jiang X (2008) Label-free electrochemical detection of DNA using ferrocene-containing cationic polythiophene and PNA probes on nanogold modified electrodes. Biosens Bioel 23:1175–1179

    Article  CAS  Google Scholar 

  • Finklea HO (2003) Electrochemistry of organized monolayers of thoils and related molecules on electrodes. In: Bard A, Robinstein I (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, pp 109–335

    Google Scholar 

  • Gasparac R, Taft BJ, Lapierre-Devlin MA, Lazarek AD, Xu JM, Kelley SO (2004) Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. J Am Chem Soc 126:12270–12271

    Article  CAS  Google Scholar 

  • Hejazi MS, Pournaghi-Azar MH, Alipour E, Abdolahinia ED, Arami S, Navvah H (2011) Development of a novel electrochemical biosensor for detection and discrimination of DNA sequence and single base mutation in dsDNA samples based on PNA-dsDNA hybridization—a new platform technology. Electroanalysis 23:503–511

    Article  CAS  Google Scholar 

  • Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACSNano 3:418–424

    CAS  Google Scholar 

  • Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Act B 134:780–786

    Article  Google Scholar 

  • Janek RP, Fawcett WR, Ulman A (1998) Impedance spectroscopy of self-assembled monolayers on Au(111): sodium ferrocyanide charge transfer at modified electrodes. Langmuir 14:3011–3018

    Article  CAS  Google Scholar 

  • Le Floch F, Ho H, Harding-Lepage P, Bédard M, Neagu-Plesu R, Leclerc M (2005) Ferrocene-functionalized cationic polythiophene for the label-free electrochemical detection of DNA. Adv Mater 17:1251–1254

    Article  Google Scholar 

  • Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Article  Google Scholar 

  • Li Z, Zhu Z, Liu W, Zhou Y, Han B, Gao Y, Tang Z (2012) Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc 134:3322–3325

    Article  CAS  Google Scholar 

  • Liu S, Li Y, Li J, Jiang L (2005) Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens Bioel 21:789–795

    Article  Google Scholar 

  • Liu J, He P, Yan J, Fang X, Peng J, Liu K, Fang Y (2008) An organometallic super-gelator with multiple-stimulus responsive properties. Adv Mater 20:2508–2511

    Article  CAS  Google Scholar 

  • Lord H, Kelley SOJ (2009) Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing. Mater Chem 19:3127–3134

    Article  CAS  Google Scholar 

  • Mateo-Martí E, Pradier C (2010) A novel type of nucleic acid-based biosensors: the use of PNA probes, associated with surface science and electrochemical detection techniques. In: Somerset VS (ed) Intelligent and biosensors. InTech, Open Access Publisher, USA, pp 323–344

    Google Scholar 

  • Merkoçi A (2010) Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioel 26:1164–1177

    Article  Google Scholar 

  • Mohanty US (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270

    Article  CAS  Google Scholar 

  • Moretto L, Panero S, Scrosati B, Ugo P (2009) Template ensemble of nanoelectrodes. In: Lin Y, Nalwa HS (eds) Handbook of electrochemical technology, vol 1. American Scientific Publisher, California, pp 87–105

    Google Scholar 

  • Nielsen PE (2004) Peptide nucleic acids: protocols and applications, 2nd edn. Horizon Bioscience, Wymondham

    Google Scholar 

  • Oh B, Choi J (2010) Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 79:153–161

    Article  Google Scholar 

  • Pasquali L, Terzi F, Zanardi C, Pigani L, Seeber R, Paolicelli G, Suturin SM, Mahne N, Nannarone S (2007a) Structure and properties of 1,4-benzenedimethanethiol films grown from solution on Au(111): an XPS and NEXAFS study. Surf Sci 601:1419–1427

    Article  CAS  Google Scholar 

  • Pasquali L, Terzi F, Zanardi C, Seeber R, Paolicelli G, Mahne N, Nannarone S (2007b) Bonding and orientation of 1,4-benzenedimethanethiol on Au(111) prepared from solution and from gas phase. J Physics C 19:305020

    Google Scholar 

  • Pasquali L, Terzi F, Seeber R, Doyle BP, Nannarone S (2008) Adsorption geometry variation of 1,4-benzenedimethanethiol SAMs on Au(111) grown from the vapour phase. J Chem Phys 128:134711–134721

    Article  CAS  Google Scholar 

  • Pasquali L, Terzi F, Seeber R, Nannarone S, Datta D, Dablemont C, Hamoudi H, Canepa M, Esaulov A (2011) A UPS, XPS and NEXAFS study of self-assembly of standing 1,4-benzenedimethanethiol SAMs on gold. Langmuir 27:4713–4720

    Article  CAS  Google Scholar 

  • Pournaghi-Azar MH, Ahour F, Hejazi MS (2010) Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Anal Bioanal Chem 397:3581–3587

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  • Salah KA, Alrokyan SA, Khan MN, Ansar AA (2010) Nanomaterials as analytical tools for genosensors. Sensors 10:963–993

    Article  Google Scholar 

  • Sforza S, Corradini R, Tedeschi T, Marchelli R (2011) Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chem Soc Rev 40:221–232

    Article  CAS  Google Scholar 

  • Soleymani L, Fang Z, Sun X, Yang H, Taft BJ, Sargent EH, Kelley SO (2009) Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. Angew Chem Int Ed 48:8457–8460

    Article  CAS  Google Scholar 

  • Soreta TR, Henry OYF, OĭSullivan CK (2011) Electrode surface nanostructuring via nanoparticle electronucleation for signal enhancement in electrochemical genosensors. Biosens Bioel 26:3962–3966

    Article  CAS  Google Scholar 

  • Ugo P, Moretto L, Vezzà F (2002) Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: recent advances and prospects. ChemPhysChem 3:917–925

    Article  CAS  Google Scholar 

  • Vernille JP, Kovell LC, Schneider JW (2004) Peptide nucleic acid (PNA) amphiphiles: synthesis, self-assembly, and duplex stability. Bioconj Che. 15:1314–1321

    Article  CAS  Google Scholar 

  • Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426

    Article  CAS  Google Scholar 

  • Wang J, Gong J, Xiong Y, Yang J, Gao Y, Liu Y, Lu X, Tang Z (2011a) Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem Commun 47:6894–6896

    Article  CAS  Google Scholar 

  • Wang L, Chen X, Wang X, Han X, Liu S, Zhao C (2011b) Electrochemical synthesis of gold nanostructure modified electrode and its development in electrochemical DNA biosensor. Biosens Bioel 30:151–157

    Article  CAS  Google Scholar 

  • Won BY, Yoon HC, Park HG (2008) Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode. Analyst 133:100–104

    Article  CAS  Google Scholar 

  • Zanardi C, Terzi F, Zanfrognini B, Pigani L, Seeber R, Lukkeri J, Aaritalo T (2009) Effective electrocatalytic system based on polyviologen and Au nanoparticles multilayer. Sens Act B 144:92–98

    Article  Google Scholar 

  • Zanardi C, Terzi F, Seeber R, Baldoli C, Licandro E, Maiorana S (2012) Peptide nucleic acid tagged with four lysine residues for amperometric genosensors. Artificial DNA 3:80–87

    Google Scholar 

  • Zhang K, Ma H, Zhang L, Zhang Y (2008) Fabrication of a sensitive impedance biosensor of DNA hybridization based on gold nanoparticles modified gold electrode. Electroanalysis 20:2127–2133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Massimo Tonelli of the Centro Interdipartimentale Grandi Strumenti (CIGS—Università di Modena e Reggio Emilia) is acknowledged for the acquisition of the SEM images. The CIGS is also acknowledged for the use of the TEM instrument. C.Z. and R.S. acknowledge the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR, Rome) for the financial support from PRIN 2009 (2009YRH27R). E.L. wishes to thank the MIUR (Rome) and the University of Milan for the financial support from PRIN 2007 (2007F9TWKE_002) and PRIN 2009 (20093N774P_003). C.B. wishes to thank CNR-PM.P06.003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiara Zanardi or Clara Baldoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanardi, C., Baldoli, C., Licandro, E. et al. Development of a gold-nanostructured surface for amperometric genosensors. J Nanopart Res 14, 1148 (2012). https://doi.org/10.1007/s11051-012-1148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1148-2

Keywords

Navigation