Skip to main content
Log in

Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The recent detection of titanium dioxide nanoparticles (n-TiO2) in wastewaters raised concerns about its fate in the aquatic environment, which is related to its mobility through water bodies. Laboratory experiments of n-TiO2 (particle size distribution: 10–65 nm) dispersed into both synthetic and real aqueous solutions under environmentally realistic concentrations (0.01, 0.1, 1 and 10 mg/l) were conducted over a time of 50 h to mimic duration of ecotoxicological tests. Agglomeration and sedimentation behaviour were measured under controlled conditions of salinity (0–35 ‰), ionic composition and strength, pH and dissolved organic carbon (DOC). Physico-chemical parameters and particle agglomeration in the dispersions were investigated by transmission electron microscopy, Brunauer, Emmett and Teller method and dynamic light scattering. A fluorescence spectrophotometer operating in the nephelometric mode was employed to obtain the sedimentation rates of n-TiO2. The overall results showed that agglomeration and sedimentation of n-TiO2 were affected mainly by the initial concentration. Sedimentation data fitted satisfactorily (R 2 in the range of 0.74–0.98; average R 2: 0.90) with a first-order kinetic equation.The settling rate constant, k, increased by approx. one order of magnitude by moving from the lowest to the highest concentration, resulting very similar especially for all dispersions at 1(k = 8 × 10−6 s−1) and 10 mg/l (k = 2 × 10−5 s−1) n-TiO2, regardless the ionic strength and composition of dispersions. The implication of these results on toxicological testing is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM, Govindaswamy S, Roose DL, Nadagouda MN (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750. doi:10.1002/etc.329

    Article  Google Scholar 

  • ASTM E729-96, 2004 (2007) Standard guide for conducting acute toxicity testing on test materials with fishes, macroinvertebrates, and amphibians. ASTM International, West Conshohocken, PA, 2007. doi:10.1520/E0729-96R07

  • ASTM E724-98, 2004 (2012) Standard guide for conducting static acute toxicity tests starting with embryos of four species of saltwater bivalve molluscs. ASTM International, West Conshohocken, PA, 2012. doi:10.1520/E0724-98R12

  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857. doi:10.1016/j.chemosphere.2009.01.078

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi:10.1002/chin.200741216

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170. doi:10.1038/nbt0604-760c

    Article  CAS  Google Scholar 

  • Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286. doi:10.1021/es8023594

    Article  CAS  Google Scholar 

  • Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693. doi:10.1021/es060847g

    Article  CAS  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359. doi:10.1021/es802628n

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi:10.1021/es9015553

    Article  CAS  Google Scholar 

  • Gustafsson J, Nordenswan E, Rosenholm JB (2003) Consolidation behavior in sedimentation of TiO2 suspensions in the presence of electrolytes. J Colloid Interf Sci 258:235–243. doi:10.1016/s0021-9797(02)00177-7

    Article  CAS  Google Scholar 

  • Jarvie HP, Al-Obaidi H, King SM, Bowes MJ, Lawrence MJ, Drake AF, Green MA, Dobson PJ (2009) Fate of silica nanoparticles in simulated primary wastewater treatment. Environ Sci Technol 43:8622–8628. doi:10.1021/es901399q

    Article  CAS  Google Scholar 

  • Jiang JK, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi:10.1007/s11051-008-9446-4

    Article  CAS  Google Scholar 

  • Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696. doi:10.1016/j.watres.2006.02.014

    Article  CAS  Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239. doi:10.1016/j.envpol.2008.08.004

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi:10.1016/j.tox.2009.08.016

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. doi:10.1021/es902987d

    Article  CAS  Google Scholar 

  • Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763. doi:10.1021/es901102n

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. doi:10.1897/08-090.1

    Article  CAS  Google Scholar 

  • Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, Auffan M, Rose J, Bottero J-Y (2010) Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut 158:3482–3489. doi:10.1016/j.envpol.2010.02.012

    Article  CAS  Google Scholar 

  • Lawler DM, Townshend A (2005) Spectrophotometry: turbidimetry and nephelometry. In: Encyclopaedia of Analytical Science, pp 343–351

  • Mantyla AW (1987) Standard seawater comparisons updated. J Phys Oceanogr 17:543–548. doi:10.1175/1520-0485(1987)017<0543:sscu>2.0.co;2

    Article  Google Scholar 

  • Nieuwenhuize J, Maas YEM, Middelburg JJ (1994) Rapid analysis of organic carbon and nitrogen in particulate materials. Mar Chem 45:217–224. doi:10.1016/0304-4203(94)90005-1

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290. doi:10.1021/es061349a

    Article  CAS  Google Scholar 

  • Proskurina VE, Chichkanov SV, Myagchenkov VA (2008) Kinetics of flocculation of the suspension of titanium dioxide in water–salt media in the presence of cationic SAS. J Water Chem Technol 30:112–120. doi:10.3103/s1063455x08020082

    Article  Google Scholar 

  • Quik JTK, Vonk JA, Hansen SF, Baun A, Van De Meent D (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37:1068–1077. doi:10.1002/etc.1783

    Article  CAS  Google Scholar 

  • Quik JTK, Stuart MC, Wouterse M, Peijnenburg W, Hendrinks AJ, Van De Meent D (2012) Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ Toxicol Chem 31:1019–1022. doi:10.1016/j.envint.2011.01.015

    Article  CAS  Google Scholar 

  • Sene JA, Pinheiro MVB, Krambrock K, Barbeira PJS (2009) Quantification of fullerene nanoparticles suspensions in water based on optical scattering. Talanta 78:1503–1507. doi:10.1016/j.talanta.2009.02.029

    Article  CAS  Google Scholar 

  • Starchevskii VL, Kislenko VM, Maksymiv NL, Koval IZ (2009) Variation kinetics of chemical and bacterial contaminations of water containing yeast cells. Biol Method Water Treat 31:469–477. doi:10.3103/s1063455x09040109

    CAS  Google Scholar 

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hard Mater 189:556–563. doi:10.1016/j.jhazmat.2011.02.072

    Article  CAS  Google Scholar 

  • Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interf Sci 324:71–79. doi:10.1016/j.jcis.2008.04.064

    Article  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257. doi:10.1016/j.watres.2009.06.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by Veneto Nanotech (Padua, Italy) through a Ph.D. sponsorship programme. The authors thankfully acknowledge Riccardo Cossi (Qi srl, Pomezia, Italy) for the valuable technical support. The support of Michele Gallo, Davide Marchetto, Dagmar Bilaničová and Alessandra Moccia (University Ca’ Foscari Venice) for sedimentation experiments, DLS analysis and mathematical treatment of experimental data, respectively, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marcomini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 926 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunelli, A., Pojana, G., Callegaro, S. et al. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J Nanopart Res 15, 1684 (2013). https://doi.org/10.1007/s11051-013-1684-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1684-4

Keywords

Navigation