Skip to main content

Advertisement

Log in

Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Tb3+ and Eu3+ co-doped Y2O3 nanoparticles with a volume-weighted average size of about 30 nm were synthesized via simple Pechini-type sol–gel process. The growth of monocrystalline nanoparticles is investigated via XRD and TEM analysis. The study of energy transfer between Tb3+ and Eu3+ ions was carried out by means of PL, PLE, and photoluminescence decay analyses. The energy transfer from Tb3+ to Eu3+ is efficient and we show how a resonant type via a dipole–dipole interaction is the most probable mechanism. We compared the energy-transfer efficiencies calculated from the intensities and from the lifetimes of \({}^5\hbox{D}_4 \longrightarrow ^7\hbox{F}_5\) transition of Tb, showing the presence of two populations of Tb, with different local surroundings, in the matrix. Furthermore, the critical distance between Tb3+ and Eu3+ ions has been calculated by means of different theories, from a new probabilistic approach based on the discretization of the theory of Chandrasekhar about the distribution of the nearest neighbors in a random distribution of particles, and from the PL data, suggesting a value of about 7 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anh TK, Ngoc T, Nga PT, Bich VT, Long P, Strek W (1988) Energy transfer between Tb3+ and Eu3+ in Y2O3 crystals. J Lumin 39:215–221. doi:10.1016/0022-2313(88)90032-4

    Article  Google Scholar 

  • Anh TK, Minh LQ, Strek W, Barthou C (1997) Energy transfer and dynamic luminescence of material containing rare earth ions used in x-ray medical imaging. J Lumin 72-74:745–747. doi:10.1016/S0022-2313(96)00144-5

    Article  Google Scholar 

  • Anh TK, Benalloul P, Barthou C, Giang LTK, Vu N, Minh LQ (2007) Luminescence, energy transfer and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+, Tm3+, Er3+ and Yb3+ ions. J Nanomater 1–10. doi:10.1155/2007/48247 (article ID 48247)

    Article  Google Scholar 

  • Arabi AM, Maghsoudipour A, Hosseinnia A, Gardeshzadeh AR, Moztarzadeh F (2011) Synthesis of submicron nanocrystalline Y2O3:Eu particles via solvothermal approach using surface modifiers. J Inorg Organomet Polym 21:269–275. doi:10.1007/s10904-010-9446-6

    Article  Google Scholar 

  • Atabaev TS, Kim HK, Hwang YH (2012) Submicron Y2O3 particles codoped with Eu and Tb ions: size controlled synthesis and tuning the luminescence emission. J Colloid Interface Sci 373:14–19. doi:10.1016/j.jcis.2011.09.047

    Article  CAS  Google Scholar 

  • Back M, Massari A, Boffelli M, Gonella F, Riello P, Cristofori D, Riccò R, Enrichi F (2012) Optical investigation of Tb3+-doped Y2O3 nanocrystals prepared by Pechini-type sol–gel process. J Nanopart Res 14:792. doi:10.1007/s11051-012-0792-x

    Article  Google Scholar 

  • Benedetti A, Polizzi S, Riello P, Battisti AD, Maldotti A (1991) X-ray diffraction characterization of iridium dioxide electrocatalysts. J Mater Chem 1(4):511–515. doi:10.1039/JM9910100511

    Article  Google Scholar 

  • Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  • Buchold DHM, Feldmann C (2008) Microemulsion approach to non-agglomerated and crystalline nanomaterials. Adv Funct Mater 18:1002–1011. doi:10.1002/adfm.200701107

    Article  CAS  Google Scholar 

  • Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89. doi:10.1103/RevModPhys.15.1

    Article  Google Scholar 

  • de J Morales Ramìrez A, Murillo AG, de J Carrillo Romo F, Hernààndez MG, de la Rosa E, Palmerin JM (2011) Y2O3:Eu3+,Tb3+ thin films prepared by sol–gel method: structural and optical studies. J Sol Gel Sci Technol 58:366–373. doi:10.1007/s10971-011-2402-2

    Article  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850. doi:10.1063/1.1699044

    Article  CAS  Google Scholar 

  • Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070. doi:10.1063/1.1740265

    Article  CAS  Google Scholar 

  • Erdei S, Roy R, Harshe G, Juwhari H, Agrawal D, Ainger FW, White WB (1995) The effect of powder preparation processes on the luminescence properties of yttrium oxide based phosphor materials. Mater Res Bull 30:745–753. doi:10.1016/0025-5408(95)00052-6

    Article  CAS  Google Scholar 

  • Flores-Gonzalez MA, Ledoux G, Roux S, Lebbou K, Perriat P, Tillement O (2005) Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method. J Solid State Chem 178:989–997. doi:10.1016/j.jssc.2004.10.029

    Article  CAS  Google Scholar 

  • Förster T (1959) Transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17. doi:10.1039/DF9592700007

    Article  Google Scholar 

  • Goldburt ET, Kulkarni B, Bhargava RN, Taylor J, Libera M (1997) Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor. J Lumin 7274:190–192. doi:10.1016/S0022-2313(96)00237-2

    Article  CAS  Google Scholar 

  • Gupta BK, Haranath D, Saini S, Singh VN, Shanker V (2010) Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 21:055607. doi:10.1088/0957-4484/21/5/055607

    Google Scholar 

  • Heber J, Hellwege KH, Köbler U, Murmann H (1970) Energy levels and interaction between Eu3+-ions at lattice sites of symmetry C 2 and symmetry C 3i in Y2O3. Z Phys 237(3):189–204. doi:10.1007/BF01398633

    Article  CAS  Google Scholar 

  • Henderson B, Imbusch GF (2006) Optical spectroscopy of inorganic solids. Oxford University Press, New York

    Google Scholar 

  • Huang Y, You H, Jia G, Song Y, Zheng Y, Yang M, Liu K, Guo N (2010) Hydrothermal synthesis, cubic structure, and luminescence properties of BaYF5:RE (RE = Eu, Ce, Tb) nanocrystals. J Phys Chem C 114(42):18051–18058. doi:10.1021/jp105061x

    Google Scholar 

  • Ishiwada N, Ueda T, Yokomori T (2011) Characteristics of rare earth (RE = Eu, Tb, Tm)-doped Y2O3 phosphors for thermometry. Luminescence 26:381–389. doi:10.1002/bio.1237

    Article  CAS  Google Scholar 

  • Jacobsohn LG, Bennett BL, Muenchausen RE, Smith JF, Cooke DW (2007) Luminescent properties of nanophosphors. Rad Meas 42:675–678. doi:10.1016/j.radmeas.2007.01.066

    Article  CAS  Google Scholar 

  • Judd BR (1962) Optical absorption intensities of rare-earth ions. Phys Rev 127:750–761. doi:10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  • Kang YC, Park SB, Lenggoro IW, Okuyama K (1999) Preparation of nonaggregated Y2O3:Eu phosphor particles by spray pyrolysis method. J Mater Res 14:2611–2615. doi:10.1557/JMR.1999.0349

    Article  CAS  Google Scholar 

  • Kautsch A, Brossmann U, Krenn H, Hofer F, Szabò DV, Würschum R (2011) Structural and optical properties of nanoparticulate Y2O3:Eu2O3 made by microwave plasma synthesis. Appl Phys A 105:709–712. doi:10.1007/s00339-011-6589-4

    Article  CAS  Google Scholar 

  • Kodaira CA, Stefani R, Maia AS, Felinto MCFC, Brito HF (2007) Optical investigation of Y2O3:Sm3+ nanophosphor prepared by combustion and Pechini methods. J Lumin 127:616–622. doi:10.1016/j.jlumin.2007.03.016

    Article  CAS  Google Scholar 

  • Li Z, Xi P, Zhao M, Gu X, Ma Q, Chen B (2010) Preparation and characterization of rare earth fluorescent anti-counterfeiting fiber via sol–gel method. J Rare Earth 28:211–214. doi:10.1016/S1002-0721(10)60289-X

    Article  Google Scholar 

  • Lin J, Yu M, Lin CK, Liu XM (2007) Multiform oxide optical materials via the versatile Pechini-type sol–gel process: synthesis and characteristics. J Phys Chem C 111:5835–5845. doi:10.1021/jp070062c

    Article  CAS  Google Scholar 

  • Liu SH (1978) Electronic structure of rare earth metals. In: Gschneidner KA, Eyring L (eds) Handbook on the physics and chemistry of rare earth, vol 1, Chap 3. North/Holland Publishing Company, Amsterdam, pp 233–335

    Google Scholar 

  • Lü Q, Li AH, Guo FY, Sun L, Zhao LC (2008) Experimental study on the surface modication of Y2O3:Tm3+/Yb3+ nanoparticles to enhance upconversion fluorescence and weaken aggregation. Nanotechnology 19:145701. doi:10.1088/0957-4484/19/14/145701

  • Lü Q, Wu Y, Ding L, Zu G, Li A, Zhao Y, Cui H (2010) Visible upconversion luminescence of Tb3+ ions in Y2O3 nanoparticles induced by a near-infrared femtosecond laser. J Alloys Compd 496:488–493. doi:10.1016/j.jallcom.2010.02.085

    Article  Google Scholar 

  • Mancini MC, Kairdolf BA, Smith AM, Nie S (2008) Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. J Am Chem Soc 130:10836–10837. doi:10.1021/ja8040477

    Google Scholar 

  • Marin R, Sponchia G, Riello P, Sulcis R, Enrichi F (2012) Photoluminescence properties of YAG:Ce3+,Pr3+ phosphors synthesized via the Pechini method for white LEDs. J Nanopart Res 14:886. doi:10.1007/s11051-012-0886-5

    Article  Google Scholar 

  • Martin TP (1996) Shells of atoms. Phys Rep 273:199–241. doi:10.1016/0370-1573(95)00083-6

    Article  CAS  Google Scholar 

  • Meltzer RS, Feofilov SP, Tissue B, Yuan HB (1999) Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium. Phys Rev B 60:R14012–R14015. doi:10.1103/PhysRevB.60.R14012

    Google Scholar 

  • Meng Q, Chen B, Xu W, Yang Y, Zhao X, Di W, Lu S, Wang X, Sun J, Cheng L, Yu T, Peng Y (2007) Size-dependent excitation spectra and energy transfer in Tb3+-doped Y2O3 nanocrystalline. J Appl Phys 102:093505. doi:10.1063/1.2803502

  • Moine B, Bizarri G (2006) Why the quest of new rare earth doped phosphors deserves to go on. Opt Mater 28:58–63. doi:10.1016/j.optmat.2004.09.028

    Article  CAS  Google Scholar 

  • Muenchausen RE, Jacobsohn LG, Bennett BL, McKigney EA, Smith JF, Valdez JA, Cooke DW (2007) Effects of Tb doping on the photoluminescence of Y2O3:Tb nanophosphors. J Lumin 126:838–842. doi:10.1016/j.jlumin.2006.12.004

    Article  CAS  Google Scholar 

  • Mukherjee S, Sudarsan V, Vatsa RK, Godbole SV, Kadam RM, Bhatta UM, Tyagi AK (2008) Effect of structure, particle size and relative concentration of Eu3+ and Tb3+ ions on the luminescence properties of Eu3+ co-doped Y2O3:Tb nanoparticles. Nanotechnology 19:325704. doi:10.1088/0957-4484/19/32/325704

  • Mukherjee ST, Sudarsan V, Sastry PU, Patra AK, Tyagi AK (2012) Annealing effects on the microstructure of combustion synthesized Eu3+ and Tb3+ doped Y2O3 nanoparticles. J Colloid Interface Sci 519:9–14. doi:10.1016/j.jallcom.2011.10.080

    CAS  Google Scholar 

  • Paulose PI, Jose G, Thomas V, Unnikrishnan NV, Warrier MKR (2003) Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass. J Phys Chem Solids 64:841–846. doi:10.1016/S0022-3697(02)00416-X

    Article  CAS  Google Scholar 

  • Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent, US 3330697

  • Peng X (2009) An essay on synthetic chemistry of colloidal nanocrystals. Nano Res 2:425–447. doi:10.1007/s12274-009-9047-2

    Article  CAS  Google Scholar 

  • Perrin J (1927) Fluorescence et induction molèculaire par rèsonance. Compt Rend 184:1097–1100

    CAS  Google Scholar 

  • Perrin J (1932) Fluorescence and molecular induction by resonance. Ann Chem Phys 17:283

    CAS  Google Scholar 

  • Pham-Thi M (1995) Rare-earth calcium sulfide phosphors for cathode-ray tube displays. J Alloys Compd 225:547–551. doi:10.1016/0925-8388(94)07060-1

    Article  CAS  Google Scholar 

  • Podhorodecki A, Banski M, Misiewicz J, Afzaal M, O’Brien P, Cha D, Wang X (2012) Multicolor light emitters based on energy exchange between Tb and Eu ions co-doped into ultrasmall β − NaYF4 nanocrystals. J Mater Chem 22:5356–5361. doi:10.1039/C2JM15785C

    Article  CAS  Google Scholar 

  • Psuja P, Hreniak D, Strek W (2007) Rare-Earth doped nanocrystalline phosphors for field emission displays. J Nanomaterials 35:81350. doi:10.1155/2007/81350

    Google Scholar 

  • Psuja P, Hreniak D, Strek W (2009) Cathodoluminescent properties of Tb3+-doped yttria nanocrystallites. J Rare Earth 27:574–578. doi:10.1016/S1002-0721(08)60291-4

    Article  Google Scholar 

  • Rao RP (2007) Phosphors for plasma display panels. In: Yen WM, Shionoya S, Yamamoto H (eds) Phosphor handbook, 2nd edn, Chap 10. CRC Press, Boca Raton, pp 746–768

    Google Scholar 

  • Reisfeld R (1973) Spectra and energy transfer of rare earths in inorganic glasses. In: Rare earths, structure and bonding, vol 13. Springer, Berlin, pp 53–98

  • Ropp RC (1967) Energy transfer in Tb3+- and Eu3+- activated Y2O3. J Opt Soc Am 57:213–216. doi:10.1364/JOSA.57.000213

    Article  CAS  Google Scholar 

  • Saengkerdsub S, Im HJ, Willis C, Dai S (2004) Pechini-type in-situ polymerizable complex (IPC) method applied to the synthesis of Y2O3:Ln (Ln = Ce or Eu nanocrystallites. J Mater Chem 14:1207–1211. doi:10.1039/b309606h

    Article  CAS  Google Scholar 

  • Sotiriou GA, Schneider M, Pratsinis SE (2011) Color-tunable nanophosphors by codoping flame-made Y2O3 with Tb and Eu. J Phys Chem C 115:1084–1089. doi:10.1021/jp106137u

    Article  CAS  Google Scholar 

  • Tessari G, Bettinelli M, Speghini A, Ajò D, Pozza G, Depero LE, Allieri B, Sangaletti L (1999) Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3. Appl Surf Sci 144145:686–689. doi:10.1016/S0169-4332(98)00902-7

    Article  Google Scholar 

  • Tomiki T, Tamashiro J, Tanahara Y, Yamada A, Fukutani H, Miyahara T, Kato H, Shin S, Ishigame M (1986) Optical spectra of Y2O3 single crystals in VUV. J Phys Soc Jpn 55:4543–4549. doi:10.1143/JPSJ.55.4543

    Article  CAS  Google Scholar 

  • Tu D, Liang Y, Liu R, Li D (2011) Eu/Tb ions co-doped white light luminescence Y2O3 phosphors. J Lumin 131:2569–2573. doi:10.1016/j.jlumin.2011.05.036

    Article  CAS  Google Scholar 

  • Venkatachalam N, Saito Y, Soga K (2009) Synthesis of Er3+ doped Y2O3 nanophosphors. J Am Ceram Soc 92:1006–1010. doi:10.1111/j.1551-2916.2009.02986.x

    Article  CAS  Google Scholar 

  • Vetrone F, Boyer JC, Capobianco JA (2004) Yttrium oxide nanocrystals: luminescent properties and applications. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 10. American Scientific Publishers, Stevenson Ranch, pp 725–765

    Google Scholar 

  • Warren BE (1969) X-ray diffraction. Addison Wesley, Reading

    Google Scholar 

  • Williams DK, Bihari B, Tissue BM, McHale JM (1998) Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals. J Phys Chem B 102:916–920. doi:10.1021/jp972996e

    Article  CAS  Google Scholar 

  • Williams GR, Bayram SB, Rand SC, Hinklin T, Laine RM (2001) Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Phys Rev A 65:013807. doi:10.1103/PhysRevA.65.013807

    Google Scholar 

  • Wu YC, Garapon C, Bazzi R, Pillonnet A, Tillement O, Mugnier J (2007) Optical and fluorescent properties of Y2O3 sol-gel planar waveguides containing Tb3+ doped nanocrystals. Appl Phys A Mater Sci Process 87:697–704. doi:10.1007/s00339-007-3894-z

    Google Scholar 

  • Wu L, Wen J, Qin Y, Yin M, Xia S, Azeretili A (2011) Experimental and theoretical analysis on the charge transfer band of Y2O3:Eu nanocrystals. J Rare Earth 29:1009–1012. doi:10.1016/S1002-0721(10)60587-X

    Google Scholar 

  • Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Mater Sci Eng R 71:1–34. doi:10.1016/j.mser.2010.07.001

    Article  Google Scholar 

  • Yen WM, Shionoya S, Yamamoto H (2007) Phosphor handbook. CRC Press, Boca Raton

    Google Scholar 

  • Zhao M, Xi P, Gu X, Li Z, Gao M, Chen B (2010) Synthesis, characterization and fluorescence properties of a novel rare earth complex for anti-counterfeiting material. J Rare Earth 130:2429–2436. doi:10.1016/S1002-0721(10)60359-6

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr T. Finotto and Mr D. Cristofori for the XRD and TEM measurements and technical support. The research projects of CIVEN are fully financed by the Veneto Region Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Back.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Back, M., Boffelli, M., Massari, A. et al. Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method. J Nanopart Res 15, 1753 (2013). https://doi.org/10.1007/s11051-013-1753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1753-8

Keywords

Navigation