Skip to main content
Log in

Extrapolated long-term stability of titanium dioxide nanoparticles and multi-walled carbon nanotubes in artificial freshwater

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Long-term stability of two engineered nanomaterials (ENMs), i.e., the inorganic n-TiO2 and the organic Multi-Walled Carbon Nanotubes (MWCNTs), dispersed in artificial freshwater (5–100 mg l−1), was investigated from short-term settling velocity, particle size distribution, and surface charge. Hydrodynamic diameter and ζ-pot, calculated by means of dynamic and electrophoretic light scattering, respectively, qualitatively indicated a general ENMs dispersion instability over 1 h time. Sedimentation results, obtained by centrifugal separation analysis using the LUMiSizer over approx. 30 min analysis time, allowed to estimate the quantitative long-term (over 30 days) stability of ENMs. Settling data fitted satisfactorily with a first-order kinetic equation (R 2 in the range of 0.918–0.989). The settling rate constant k values extrapolated at gravity spanned one order of magnitude, i.e., from 7.21 × 10−5 to 4.12 × 10−4 s−1, and with the increasing of initial ENMs concentration. Sedimentation velocities were in good agreement with short- to long-term literature data (7.8 × 10−2–1.7 × 101 m day−1 vs. 5 × 10−4–3 × 10−1 m day−1 for n-TiO2 and 5.9 × 10−2–3.4 × 10−1 m day−1 vs. 2 × 10−1–1.2 m day−1 for MWCNTs). n-TiO2 showed a higher long-term stability with respect to MWCNTs (average: 1 × 10−1 ± 3.4 × 10−2 m day−1 instead of 1.7 × 10−1 ± 1.1 × 10−1 m day−1, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeleye AS, Keller AA (2014) Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances. Water Res 49:236–250. doi:10.1016/j.watres.2013.11.032

    Article  Google Scholar 

  • Afrooz ARMN, Khan IA, Hussain SM, Saleh NB (2013) Mechanistic heteroaggregation of gold nanoparticles in a wide range of solution chemistry. Environ Sci Technol 47:1853–1860

    Article  Google Scholar 

  • Al-Kattan A, Wichser A, Zuin S et al (2014) Behavior of TiO2 released from Nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environ Sci Technol 48:6710–6718. doi:10.1021/es5006219

    Article  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA, Hassellöv M (2011) Challenges in exposure modeling of nanoparticles in aquatic environments. Hum Ecol Risk Assess 17:245–262

    Article  Google Scholar 

  • ASTM E729-96, 2004 (2007) Standard guide for conducting acute toxicity testing on test materials with fishes, macroinvertebrates, and amphibians. ASTM International, West Conshohocken. doi:10.1520/E0729-96R07

    Google Scholar 

  • Battin TJ, Kammer FV, Weilhartner A et al (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104. doi:10.1021/es9017046

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Brunelli A, Pojana G, Callegaro S, Marcomini A (2013) Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J Nanopart Res 15:1–10

    Article  Google Scholar 

  • Buettner KM, Rinciog CI, Mylon SE (2010) Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloid Surf A Physicochem Eng Asp 366:74–79. doi:10.1016/j.colsurfa.2010.05.024

    Article  Google Scholar 

  • Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    Article  Google Scholar 

  • Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409:2443–2450. doi:10.1016/j.scitotenv.2011.03.020

    Article  Google Scholar 

  • Chowdhury I, Duch MC, Mansukhani ND et al (2013) Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ Sci Technol 47:6288–6296

    Article  Google Scholar 

  • Dahirel V, Jardat M (2010) Effective interactions between charged nanoparticles in water: what is left from the DLVO theory? Curr Opin Colloid Interface Sci 15:2–7. doi:10.1016/j.cocis.2009.05.006

    Article  Google Scholar 

  • DeLoid G, Cohen JM, Darrah T et al (2014) Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5:3514. doi:10.1038/ncomms4514

    Article  Google Scholar 

  • Detloff T, Sobisch T, Lerche D (2007) Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technol 174:50–55

    Article  Google Scholar 

  • Erné B (2012) Sedimentation equilibria of colloidal dispersions in ultrathin glass capillaries. Dispers Lett 3:16–17

    Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L et al (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95. doi:10.1007/s00216-008-2458-1

    Article  Google Scholar 

  • Gambinossi F, Mylon SE, Ferri JK (2015) Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interfac 222:332–349. doi:10.1016/j.cis.2014.07.015

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic: material flow analysis. Environ Toxicol Chem 29:1036–1048

    Google Scholar 

  • Hartmann NB, Skjolding LM, Hansen SF et al (2014) Environmental fate and behaviour of nanomaterials. The Danish Environmental Protection Agency, Copenhagen

    Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  Google Scholar 

  • Hunter RJ (1988) Zeta potential in colloidal science—principles and applications, 3rd edn. Academic Press Limited, London

    Google Scholar 

  • Jarvie HP, Al-Obaidi H, King SM et al (2009) Fate of silica nanoparticles in simulated primary wastewater treatment. Environ Sci Technol 43:8622–8628. doi:10.1021/es901399q

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi:10.1007/s11051-008-9446-4

    Article  Google Scholar 

  • Keller AA, Wang H, Zhou D et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  Google Scholar 

  • Kennedy Alan J, Hull MS, Steevens JA et al (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27:1932–1941. doi:10.1897/07-624.1

    Article  Google Scholar 

  • Krause B, Mende M, Potschke P et al (2010) Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon 48:2746–2754. doi:10.1016/j.carbon.2010.04.002

    Article  Google Scholar 

  • Lerche D (2002) Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field. J Dispers Sci Technol 23:699–709. doi:10.1081/DIS-120015373

    Article  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175. doi:10.1021/es9035557

    Article  Google Scholar 

  • Liu HH, Surawanvijit S, Rallo R et al (2011a) Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number monte carlo simulation. Environ Sci Technol 45:9284–9292. doi:10.1021/es202134p

    Article  Google Scholar 

  • Liu X, Wazne M, Chou T et al (2011b) Influence of Ca2+ and Suwannee River humic acid on aggregation of silicon nanoparticles in aqueous media. Water Res 45:105–112. doi:10.1016/j.watres.2010.08.022

    Article  Google Scholar 

  • Liu J, Legros S, Ma G et al (2012) Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 87:918–924

    Article  Google Scholar 

  • Loux NT, Su YS, Hassan SM (2011) Issues in assessing environmental exposures to manufactured nanomaterials. Int J Environ Res Public Health 8:3562–3578

    Article  Google Scholar 

  • Lowry GV, Hotze EM, Bernhardt ES et al (2010) Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. J Environ Qual 39:1867–1874

    Article  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  Google Scholar 

  • Nowack B, Ranville JF, Diamond S et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  Google Scholar 

  • Nowack B, Mueller N, Krug H, Wick P (2014) How to consider engineered nanomaterials in major accident regulations? Environ Sci Eur 26:2

    Article  Google Scholar 

  • OECD (1992) Guidelines for Testing of Chemicals No. 203. Fish, Acute Toxicity Test (Annex 2 Composition of the recommended reconstituted water). OECD, Paris

  • OECD (2006) Freshwater alga and cyanobacteria, growth ınhibition test. Organisation for Economic Co-Operation and Development, Paris

    Book  Google Scholar 

  • Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50

    Article  Google Scholar 

  • Phenrat T, Saleh N, Sirk K et al (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290. doi:10.1021/es061349a

    Article  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11. doi:10.1007/s11051-012-1109-9

    Article  Google Scholar 

  • Praetorius A, Scheringer M, Hungerbühler K (2012) Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46:6705–6713

    Article  Google Scholar 

  • Quik JTK, Lynch I, Hoecke KV et al (2010) Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81:711–715. doi:10.1016/j.chemosphere.2010.07.062

    Article  Google Scholar 

  • Quik JTK, Vonk JA, Hansen SF et al (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37:1068–1077

    Article  Google Scholar 

  • Quik JTK, Stuart MC, Wouterse M et al (2012) Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ Toxicol Chem 31:1019–1022. doi:10.1002/etc.1783

    Article  Google Scholar 

  • Quik JTK, van De Meent D, Koelmans AA (2014a) Simplifying modeling of nanoparticle aggregation–sedimentation behavior in environmental systems: a theoretical analysis. Water Res 62:193–201. doi:10.1016/j.watres.2014.05.048

    Article  Google Scholar 

  • Quik JTK, Velzeboer I, Wouterse M et al (2014b) Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res 48:269–279. doi:10.1016/j.watres.2013.09.036

    Article  Google Scholar 

  • Ramsden CS, Henry TB, Handy RD (2013) Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–413. doi:10.1016/j.aquatox.2012.08.021

    Article  Google Scholar 

  • Schwarzer H-C, Peukert W (2005) Prediction of aggregation kinetics based on surface properties of nanoparticles. Chem Eng Sci 60:11–25

    Article  Google Scholar 

  • Schwyzer I, Kaegi R, Sigg L et al (2012) Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. Environ Pollut 169:64–73

    Article  Google Scholar 

  • Sobisch T, Kuechler S, Uhl A (2010) Comprehensive characterization of medical nutrition—accelerated stability analysis and creaming velocity distribution. Dispers Lett 1:10–13

    Google Scholar 

  • Sobisch T, Le Coeur C, Larue O et al (2012) Characterization of sedimentation and consolidation behaviour of kaolin suspensions in presence of dispersant. Dispers Lett 3:18–22

    Google Scholar 

  • Suttiponparnit K, Jiang J, Sahu M et al (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27

    Google Scholar 

  • Takeuchi Y, Ida T, Kimura K (1997) Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation. J Phys Chem B 101:1322–1327. doi:10.1021/jp963107a

    Article  Google Scholar 

  • Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324:71–79. doi:10.1016/j.jcis.2008.04.064

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA/812/R/02/012. Office of Water, Washington, DC

    Google Scholar 

  • Van der Zande BMI, Dhont JKG, Bohmer MR, Philipse AP (2000) Colloidal dispersions of gold rods characterized by dynamic light scattering and electrophoresis. Langmuir 16:459–464

    Article  Google Scholar 

  • Van Koetsem F, Verstraete S, Van der Meeren P, Du Laing G (2015) Stability of engineered nanomaterials in complex aqueous matrices: settling behaviour of CeO2 nanoparticles in natural surface waters. Environ Res 142:207–214. doi:10.1016/j.envres.2015.06.028

    Article  Google Scholar 

  • Villarreal FD, Das GK, Abid A et al (2014) Sublethal effects of CuO nanoparticles on Mozambique tilapia (Oreochromis mossambicus) are modulated by environmental salinity. PLoS ONE 9:e88723. doi:10.1371/journal.pone.0088723

    Article  Google Scholar 

  • Wang F, Yao J, Chen H et al (2013) Sorption of humic acid to functionalized multi-walled carbon nanotubes. Environ Pollut 180:1–6. doi:10.1016/j.envpol.2013.04.035

    Article  Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL et al (2009) Decreasing Uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials†‡. Environ Sci Technol 43:6458–6462. doi:10.1021/es803621k

    Article  Google Scholar 

  • Zhang Y, Yang M, Portney N et al (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10:321–328. doi:10.1007/s10544-007-9139-2

    Article  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257. doi:10.1016/j.watres.2009.06.005

    Article  Google Scholar 

  • Zhang W, Crittenden J, Li K, Chen Y (2012) Attachment efficiency of nanoparticle aggregation in aqueous dispersions: modeling and experimental validation. Environ Sci Technol 46:7054–7062

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially founded by the European Commission within the Seventh Framework Program (FP7; SUN project - Grant Agreement n° 604305). The authors thankfully acknowledge VenetoNanotech for providing TEM images of MWCNT and Riccardo Cossi (Qi srl, Pomezia, Italy) and Andrea Scandella (University Ca’ Foscari of Venice) for their valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marcomini.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunelli, A., Zabeo, A., Semenzin, E. et al. Extrapolated long-term stability of titanium dioxide nanoparticles and multi-walled carbon nanotubes in artificial freshwater. J Nanopart Res 18, 113 (2016). https://doi.org/10.1007/s11051-016-3412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3412-3

Keywords

Navigation