Skip to main content
Log in

Reactivity Aspects of SBA15-Based Doped Supported Catalysts: H2O2 Direct Synthesis and Disproportionation Reactions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Pd and PdAu catalysts supported on SBA15 and SiO2 were prepared and investigated for H2O2 direct synthesis in a batch autoclave (10 °C and 17.5 bar) and in the absence of halides and acids. The SiO2 supported catalysts exhibited inferior performances compared to the mesoporous ordered SBA15. A good control of both the catalysts dispersion and nanoparticle stability was achieved using SBA15. Catalysts were doped with bromine, a promoter in the H2O2 direct synthesis. Productivity and selectivity decreased when bromine was incorporated in the catalysts, thus indicating a possible poisoning due to the grafting process. A synergetic effect between Pd and Au was observed both in presence and absence of bromopropylsilane grafting on the catalyst surface. Three modifiers of the SBA15 support (Al, CeO2 and Ti) were chosen to elucidate the influence of the surface properties on metal dispersion and catalytic performance. Higher productivity and selectivity were achieved incorporating Al into the SBA15 framework, whereas neither Ti nor CeO2 improved H2O2 yields. The enhanced performance observed for the Prau/Al–SBA15 catalysts was attributed to the increased number of Brønsted acid sites. A modification of this catalyst with bromine was confirmed to impair both productivity and selectivity, possibly due to the broader particle size distribution and the poor stability of the metal nanoparticles, as demonstrate by transmission electron microscopy (TEM) images. H2O2 disproportionation was also investigated. A much slower reaction rate was observed compared to the H2O2 production, suggesting that the major contributor in the process of H2O2 destruction must be connected to the hydrogenation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blanco-Brieva G, Capel-Sanchez M, de Frutos MP, Padilla-Polo A, Campos-Martin J, Fierro JLG (2008) Ind Eng Chem Res 47:8011–8015

    Article  CAS  Google Scholar 

  2. Metzger J (2012) Sustainable industrial chemistry—principles, tools and industrial examples. By F. Cavani, G. Centi, S. Perathoner, F. Trifiró. Chemie Ingenieur Technik 84:764–764

  3. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984

    Article  CAS  Google Scholar 

  4. Samanta C (2008) Appl Catal A 350:133–149

    Article  CAS  Google Scholar 

  5. Centi G, Perathoner S, Abate S (2009) Modern heterogeneous oxidation catalysis anonymous. Wiley-VCH Verlag GmbH & Co. KGaA

  6. Ntainjua NE, Edwards JK, Carley AF, Lopez-Sanchez JA, Moulijn JA, Herzing AA, Kiely CJ, Hutchings GJ (2008) Green Chem 10:1162–1169

    Article  Google Scholar 

  7. Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F, Cruciani G, Pinna F, Strukul G (2009) J Catal 268:122–130

    Article  CAS  Google Scholar 

  8. Li G, Edwards J, Carley AF, Hutchings GJ (2007) Catal Commun 8:247–250

    Article  CAS  Google Scholar 

  9. Biasi P, Menegazzo F, Pinna F, Eränen K, Canu P, Salmi TO (2010) Ind Eng Chem Res 49:10627–10632

    Article  CAS  Google Scholar 

  10. Biasi P, Menegazzo F, Pinna F, Eränen K, Salmi TO, Canu P (2011) Chem Eng J 176–177:172–177

    Article  Google Scholar 

  11. Menegazzo F, Signoretto M, Frison G, Pinna F, Strukul G, Manzoli M, Boccuzzi F (2012) J Catal 290:143–150

    Article  CAS  Google Scholar 

  12. Samanta C, Choudhary VR (2007) Appl Catal A 330:23–32

    Article  CAS  Google Scholar 

  13. Abate S, Centi G, Melada S, Perathoner S, Pinna F, Strukul G (2005) Catal Today 104:323–328

    Article  CAS  Google Scholar 

  14. Moreno T, García-Serna J, Cocero MJ (2010) Green Chem 12:282–289

    Article  CAS  Google Scholar 

  15. Lunsford JH (2003) J Catal 216:455–460

    Article  CAS  Google Scholar 

  16. Voloshin Y, Halder R, Lawal A (2007) Catal Today 125:40–47

    Article  CAS  Google Scholar 

  17. Deguchi T, Iwamoto M (2011) J Catal 280:239–246

    Article  CAS  Google Scholar 

  18. Moreno T, García-Serna J, Cocero MJ (2011) J Supercrit Fluids 57:227–235

    Article  CAS  Google Scholar 

  19. Inoue T, Schmidt MA, Jensen KF (2007) Ind Eng Chem Res 46:1153–1160

    Article  CAS  Google Scholar 

  20. Menegazzo F, Burti P, Signoretto M, Manzoli M, Vankova S, Boccuzzi F, Pinna F, Strukul G (2008) J Catal 257:369–381

    Article  CAS  Google Scholar 

  21. Gemo N, Biasi P, Canu P, Salmi TO (2012) Chem Eng J 207–208:539–551

    Article  Google Scholar 

  22. Choudhary VR, Samanta C (2006) J Catal 238:28–38

    Article  CAS  Google Scholar 

  23. Biasi P, Gemo N, Hernández Carucci JR, Eränen K, Canu P, Salmi TO (2012) Ind Eng Chem Res 51:8903–8912

    Article  CAS  Google Scholar 

  24. Moreno T, García-Serna J, Plucinski P, Sánchez-Montero MJ, Cocero MJ (2010) Appl Catal A 386:28–33

    Article  CAS  Google Scholar 

  25. Chinta S, Lunsford JH (2004) J Catal 225:249–255

    Article  CAS  Google Scholar 

  26. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917–1923

    Article  CAS  Google Scholar 

  27. Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Discuss 138:225–239

    Article  CAS  Google Scholar 

  28. Abate S, Perathoner S, Centi G (2012) Catal Today 179:170–177

    Article  CAS  Google Scholar 

  29. Abate S, Lanzafame P, Perathoner S, Centi G (2011) Catal Today 169:167–174

    Article  CAS  Google Scholar 

  30. Ghedini E, Menegazzo F, Signoretto M, Manzoli M, Pinna F, Strukul G (2010) J Catal 273:266–273

    Article  CAS  Google Scholar 

  31. Park S, Lee J, Song JH, Kim TJ, Chung Y, Oh S, Song IK (2012) J Mol Catal A: Chem 363–364:230–236

    Article  Google Scholar 

  32. Han Y, Lunsford JH (2005) J Catal 230:313–316

    Article  CAS  Google Scholar 

  33. Samanta C, Choudhary VR (2007) Catal Commun 8:73–79

    Article  CAS  Google Scholar 

  34. Melada S, Rioda R, Menegazzo F, Pinna F, Strukul G (2006) J Catal 239:422–430

    Article  CAS  Google Scholar 

  35. Choudhary VR, Samanta C, Gaikwad AG (2004) Chem Commun 2054–2055

  36. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  37. Piqueras CM, García-Serna J, Cocero MJ (2011) J Supercrit Fluids 56:33–40

    Article  CAS  Google Scholar 

  38. Gemo N, Biasi P, Salmi TO, Canu P (2012) J Chem Thermodyn 54:1–9

    Article  CAS  Google Scholar 

  39. Lopez-Castillo Z, Aki SNVK, Stadtherr MA, Brennecke JF (2008) Ind Eng Chem Res 47:570–576

    Article  CAS  Google Scholar 

  40. Xie X, Brown JS, Bush D, Eckert CA (2005) J Chem Eng Data 50:780–783

    Article  CAS  Google Scholar 

  41. Emeis CA (1993) J Catal 141:347–354

    Article  CAS  Google Scholar 

  42. Lee H, Kim S, Lee D, Lee K (2011) Catal Commun 12:968–971

    Article  CAS  Google Scholar 

  43. Koekkoek AJJ, van Veen JAR, Gerrtisen PB, Giltay P, Magusin PCMM, Hensen EJM (2012) Microporous Mesoporous Mater 151:34–43

    Article  CAS  Google Scholar 

  44. Akondi AM, Trivedi R, Sreedhar B, Kantam ML, Bhargava S (2012) Catal Today 198:35–44

    Article  CAS  Google Scholar 

  45. Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, Melgunov MS, Chesalov YA, Chang J- (2007) Appl Catal A 317:1–10

    Article  CAS  Google Scholar 

  46. Chen S, Tang C, Lee J, Jang L, Tatsumi T, Cheng S (2011) J Mater Chem 21:2255–2265

    Article  CAS  Google Scholar 

  47. Trukhan NN, Romannikov VN, Shmakov AN, Vanina MP, Paukshtis EA, Bukhtiyarov VI, Kriventsov VV, Danilov IY, Kholdeeva OA (2003) Microporous Mesoporous Mater 59:73–84

    Article  CAS  Google Scholar 

  48. Liu Q, Lunsford JH (2006) J Catal 239:237–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N. Gemo gratefully acknowledges the Cariparo Foundation and the Johan Gadolin Scholarship for financial support. P. Biasi gratefully acknowledges the Otto A. Malm Foundation for financial support. F. Menegazzo thanks INSTM (Florence) for postdoctoral fellowship. Prof. M. Modesti and Dr. S. Besco, Dipartimento di Ingegneria Industriale, University of Padova, are gratefully acknowledged for their precious help in the thermogravimetric analysis. This work is part of the activities at the Åbo Akademi Process Chemistry Centre (PCC) within the Finnish Centre of Excellence Programmes (2000–2005 and 2006–2011) by the Academy of Finland. In Sweden, the Bio4Energy programme and Kempe Foundations are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierdomenico Biasi or Jyri-Pekka Mikkola.

Additional information

Nicola Gemo and Pierdomenico Biasi contributed equally to the present work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gemo, N., Biasi, P., Canu, P. et al. Reactivity Aspects of SBA15-Based Doped Supported Catalysts: H2O2 Direct Synthesis and Disproportionation Reactions. Top Catal 56, 540–549 (2013). https://doi.org/10.1007/s11244-013-0009-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0009-2

Keywords

Navigation