Skip to main content
Log in

The Role of Interstitial Impurities in the Frictional Instability of Seismic Fault Models

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The presence of impurities between two surfaces may greatly affect their frictional properties. In this article, we investigate the role of the impurities by studying experimental and numerical models of geophysical interest. Both model and experiments are considered to be representative of the dynamics of an earthquake fault and both systems reliably produce salient traits of earthquake dynamics such as stick-slip intermittent dynamics and power-law event distributions. The impurities are granular particles enclosed in the fault, known as fault gouge. We consider the role of the granular particles in the statistics of the slip events, and in the production of acoustic emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wornyoh, E.Y.A., Jasti, V.K., Higgs, C.F. III: A review of dry particulate lubrication: powder and granular materials. J. Tribol. 129, 438–449 (2007)

    Article  CAS  Google Scholar 

  2. Scholz, C.H.: Earthquakes and friction laws. Nature. 391, 37–42 (1998)

    Article  CAS  Google Scholar 

  3. Marone, C.: Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998)

    Article  CAS  Google Scholar 

  4. Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)

    Article  CAS  Google Scholar 

  5. Tillemans, H.-J., Herrmann, H.J.: Simulating deformations of granular solids under shear. Physica A 217, 261–288 (1995)

    Article  Google Scholar 

  6. Aharonov, E., Sparks, D.: Rigidity phase transition in granular packings. Phys. Rev. E 60, 6890–6896 (1999)

    Article  CAS  Google Scholar 

  7. Aharonov, E., Sparks, D.: Stick-slip motion in simulated granular layers. J. Geophys. Res. 109, B09306 (2004)

    Article  Google Scholar 

  8. Ciamarra, M.P.., Lippiello, E., Godano, C., de Arcangelis, L.: Unjamming dynamics: the micromechanics of a seismic fault model. Phys. Rev. Lett.104, 238001 (2010)

    Article  Google Scholar 

  9. Ciamarra, M.P., Lippiello, E., de Arcangelis, L., Godano, C.: Statistics of slipping event sizes in granular seismic fault models. EPL 95, (2011)

    Article  Google Scholar 

  10. Gutenberg, B., Richter, C.F.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185 (1944)

    Google Scholar 

  11. Silbert, L.E., Ertas, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302/1–051302/12 (2001)

    Article  CAS  Google Scholar 

  12. Kun, F., Herrmann, H.J.: Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59(3), 2623–2632 (1999)

    Article  CAS  Google Scholar 

  13. Sammis, C.G., King, G., Biegel, R.: The kinematics of gouge deformation. Pure Appl. Geophys. 125, 777–812 (1987)

    Article  Google Scholar 

  14. Sammis, C.G., Biegel, R.L.: Fractals, fault-gouge and friction. Pure Appl. Geophys. 131, 255–271 (1989)

    Article  Google Scholar 

  15. Biegel, R.L., Sammis, C.G., Dieterich, J.H.: The frictional properties of a simulated gouge having a fractal particle distribution. J. Struct. Geol. 11, 827–846 (1989)

    Article  Google Scholar 

  16. Roux, S., Hansen, A., Herrmann, H.J., Vilotte, J.P.: A model for gouge deformation: implications for remanent magnetization. Geophys. Res. Lett. 20, 1499–1502 (1993)

    Article  Google Scholar 

  17. Goren, L., Aharonov, E., Sparks, D., Toussaint, R.: Pore pressure evolution in deforming granular material: a general formulation and the infinitely stiff approximation. J. Geophys. Res. 115, B09216 (2010)

    Article  Google Scholar 

  18. Kanamori, H., Anderson, D.: Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65, 1073 (1975)

    Google Scholar 

  19. Baldassarri, A., Dalton, F., Petri, A., Zapperi, S., Pontuale, G., Pietronero, L.: Brownian forces in sheared granular matter. Phys. Rev. Lett. 96, 118002 (2006)

    Article  CAS  Google Scholar 

  20. Petri, A., Baldassarri, A., Dalton, F., Pontuale, G., Pietronero, L., Zapperi, S.: Stochastic dynamics of a sheared granular medium. Eur. Phys. J. B. 64, 531 (2008)

    Article  CAS  Google Scholar 

  21. Hatano, T., Narteau, C., Shebalin, P.: Common dependence on stress for the statistics of granular avalanches and earthquakes, arXiv:1110.1777v1 [cond-mat.stat-mech] 8 Oct (2011)

  22. Burridge, R., Knopoff, L.: Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341 (1967)

    Google Scholar 

  23. Carlson, J.M., Langer, J.S., Shaw, B.E.: Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994)

    Google Scholar 

  24. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381 (1987)

    Article  Google Scholar 

  25. Olami, Z., Feder, H.J.S., Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244 (1992)

    Article  Google Scholar 

  26. Fisher, D.S.: Collective transport in random media: from superconductors to earthquakes, Physics Reports 301, 113 (1998), and refs therein

    Google Scholar 

  27. Tanguy, A., Gounelle, M., Roux, S.: From individual to collective pinning: effect of long-range elastic interactions. Phys. Rev. E. 58, 1577 (1998)

    Article  CAS  Google Scholar 

  28. F. Colaiori.: Exactly solvable model of avalanches dynamics for Barkhausen crackling noise. Adv. Phys. 57, 287 (2008)

    Google Scholar 

Download references

Acknowledgments

This research was conducted with financial support from FIRB grant RBFR081IUK and EU NEST/Pathfinder project TRIGS, Contract no. 043386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Pica Ciamarra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciamarra, M.P., Dalton, F., de Arcangelis, L. et al. The Role of Interstitial Impurities in the Frictional Instability of Seismic Fault Models. Tribol Lett 48, 89–94 (2012). https://doi.org/10.1007/s11249-012-9954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9954-3

Keyword

Navigation