Skip to main content
Log in

Plant community attributes affect dry grassland orchid establishment

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Several factors have been taken into account to explain the distribution of orchid species. We explored the extent to which plant community attributes affect the abundance and reproductive fitness of three orchid species (Anacamptis morio, Himantoglossum adriaticum and Ophrys sphegodes), native to dry grasslands. Structural attributes of plant community (e.g. cover and height) were assessed in ninety 4 m2 plots scattered on three hill massifs of the Veneto Region (NE Italy). For the three target orchid species, the height of the flowering stalk, the relative ramet height and the number of flowers and fruits were recorded in 203 tagged ramets. Generalized Linear Model revealed that plant community attributes such as cover and height of the herb layer exert a negative effect on the abundance of orchid populations. Furthermore, regression models indicated that O. sphegodes and H. adriaticum reproductive fitness, determined as fruit/flower ratio, was positively affected by relative ramet height. Our results revealed that local herbaceous vegetation structure influences the cover and fruit set of target orchid species. However, there can be substantial variation in the response of different species and variation in the structural attributes of surrounding vegetation may be associated with differences in the strength of selection. In order to achieve effective results in orchid species conservation, protocols for the in situ conservation must detail the range of vegetation covers and heights at which orchid species are favoured and can produce the most effective inflorescences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerman JD, Sabat A, Zimmerman JK (1996) Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia 106:192–198

    Article  Google Scholar 

  • Anonymous (1992) European Communities Council, Directive 92/43/CEE on the Conservation of Natural Habitats and of Wild Fauna and Flora. European Communities, Brussels

    Google Scholar 

  • Armas C, Rodriguez-Echeverria S, Pugnaire FI (2011) A field test of the stress-gradient hypothesis along an aridity gradient. J Veg Sci 22:818–827

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  CAS  PubMed  Google Scholar 

  • Bini C (2001) I suoli dei Colli Euganei. Padova, Italy

    Google Scholar 

  • Biondi E, Casavecchia S, Pesaresi S (2006) Spontaneous renaturalization processes of the vegetation in the abandoned fields (Central Italy). Ann Bot 6:65–93

    Google Scholar 

  • Bobbink R, Willems JH (1987) Increasing dominance of Brachypodium pinnatum (L.) Beauv. in chalk grasslands: a threat to a species-rich ecosystem. Biol Conserv 40:301–314

    Article  Google Scholar 

  • Bódis J, Botta-Dukát Z (2008) Growth of Himantoglossum adriaticum and H. caprinum individuals, and relationship between sizes and flowering. Acta Bot Hung 50:257–274

    Article  Google Scholar 

  • Bódis J, Molnár E (2009) Long-term monitoring of Himantoglossum adriaticum H. Baumann population in Keszthely hills, Hungary. Natura Somogyiensis 15:27–40

    Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Burgeff H (1959) Mycorrhiza of orchids. In: Withner C (ed) The orchids: a scientific survey. Ronald Press, New York, pp 361–395

    Google Scholar 

  • Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494

    Article  Google Scholar 

  • Coates F, Lunt ID, Tremblay RL (2006) Effects of disturbance on population dynamics of the threatened orchid Prasophyllum correctum DL Jones and implications for grassland management in south-eastern Australia. Biol Conserv 129:59–69

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Austral J Bot 51:335–380

    Article  Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecoland Evol 20(9):487–494

    Article  Google Scholar 

  • Delforge P (2001) Guide des orchidées d‘Europe. Delachaux et Niestlé, Lausanne

    Google Scholar 

  • Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14

    Article  Google Scholar 

  • Djordjević V, Tsiftsis S, Lakušić D, Jovanović S, Stevanović V (2016) Factors affecting the distribution and abundance of orchids in grasslands and herbaceous wetlands. Syst Biodivers 14(4):355–370

    Article  Google Scholar 

  • Dorland E, Willems JH (2002) Light climate and plant performance of Ophrys insectifera: a 4-year field experiment in The Netherlands 1998–2001. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations and underlying mechanisms in terrestrial orchid populations. Backhuys Publishers, Leiden, pp 225–238

    Google Scholar 

  • Dorland E, Willems JH (2006) High light availability alleviates the costs of reproduction in Ophrys insectifera (Orchidaceae). J Europäischer Orchideen 38:501–518

    Google Scholar 

  • Eriksson O (1995) Seedling recruitment in deciduous forest herbs—the effects of litter, soil chemistry and seed bank. Flora 190:65–70

    Google Scholar 

  • Fantinato E, Del Vecchio S, Slaviero A, Conti L, Acosta ATR, Buffa G (2016) Does flowering synchrony contribute to the sustainment of dry grassland biodiversity? Flora 15:304–318

    Google Scholar 

  • Fischer M, Stocklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737

    Article  Google Scholar 

  • García-Camacho R, Iriondo JM, Escudero A (2010) Seedling dynamics at elevation limits: complex interactions beyond seed and microsite limitations. Am J Bot 97:1791–1797

    Article  PubMed  Google Scholar 

  • Gregg KB (2004) Recovery of showy lady’s slippers (Cypripedium reginae Walter) from moderate and severe herbivory by white-tailed deer (Odocoileus virginianus Zimmerman). Nat Area J 24:232–241

    Google Scholar 

  • Grindeland JM, Sletvold N, Ims RA (2005) Effects of floral display size and plant density on pollinator visitation rate in a natural population of Digitalis purpurea. Funct Ecol 19:383–390

    Article  Google Scholar 

  • Gurevitch J, Scheiner SM, Fox GA (2002) The ecology of plants. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Habel JC, Dengler J, Janišová M, Török P, Wellstein C, Wiezik M (2013) European grassland ecosystems: threatened hotspots of biodiversity. Biodiv Conserv 22:2131–2138

    Article  Google Scholar 

  • Hutchings MJ, Mendoza A, Havers W (1998) Demographic properties of an outlier population of Orchis militaris L. (Orchidaceae) in England. Bot J Linnean Soc 126:95–107

    Google Scholar 

  • IUCN (1999) IUCN guidelines for the prevention of biodiversity loss due to biological invasion. Species 31(32):28–42

    Google Scholar 

  • Jacquemyn H, Brys R (2015) Pollen limitation and the contribution of autonomous selfing to fruit and seed set in a rewarding orchid. Am J Bot 102:67–72

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldan-Ruiz I, Wiegand T (2007) A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytol 176:448–459

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Jongejans E (2010) Size-dependent flowering and costs of reproduction affect population dynamics in a tuberous perennial woodland orchid. J Ecol 98:1204–1215

    Article  Google Scholar 

  • Janećková P, Wotavová K, Schödelbauerová I, Jersáková J, Kindlmann P (2006) relative effects of management and environmental conditions on performance and survival of populations of a terrestrial orchid, Dactylorhiza majalis. Biol Conserv 129:40–49

    Article  Google Scholar 

  • Janišová M, Bartha S, Kiehl K, Dengler J (2011) Advances in the conservation of dry grasslands: introduction to contributions from the seventh European dry grassland meeting. Plant Biosyst 145:507–513

    Article  Google Scholar 

  • Kindlmann P, Jersáková J (2006) Effect of floral display on reproductive success in terrestrial orchids. Folia Geobot 41:47–60

    Article  Google Scholar 

  • Kull T, Hutchings MJ (2006) A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv 129:31–39

    Article  Google Scholar 

  • Landi M, Frignani F, Lazzeri C, Angiolini C (2009) Abundance of orchids on calcareous grasslands in relation to community species, environmental, and vegetational conditions. Russ J Ecol 40:486–494

    Article  Google Scholar 

  • Maccherini S (2006) Factors associated with species richness in a remnant calcareous grassland. Grassland Sci 52:181–184

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Malden

    Google Scholar 

  • Mason NWH, de Bello F, Dolezal J, Leps J (2011) Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J Ecol 99:788–796

    Article  Google Scholar 

  • Moeller DA (2004) Facilitative interactions among plants via shared pollinators. Ecology 85:3289–3301

    Article  Google Scholar 

  • Moles AT, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199

    Article  Google Scholar 

  • O’Connell LM, Johnston MO (1998) Male and female pollination success in a deceptive orchid, a selection study. Ecology 79:1246–1260

    Article  Google Scholar 

  • Peakall R, Handel SN (1993) Pollinators discriminate among floral heights of a sexually deceptive orchid—implications for selection. Evolution 47:1681–1687

    Article  Google Scholar 

  • Pecoraro L, Girlanda M, Kull T, Perini C, Perotto S (2013) Fungi from the roots of the terrestrial photosynthetic orchid Himantoglossum adriaticum. Plant Ecol Evol 146:145–152

    Article  Google Scholar 

  • Pierce S, Belotti J (2011) The conservation of terrestrial orchids from the Alps to the Po plain of Lombardy, Albino (BG) and Galbiate (LC), Italy. Parco Orobie Bergamasche, CFA Regione Lombardia

  • Pierce S, Ceriani R, Villa M, Cerabolini B (2006) Quantifying relative extinction risks and targeting intervention for the orchid flora of a natural park in the European prealps. Conserv Biol 20(6):1804–1810

    Article  PubMed  Google Scholar 

  • Pierce S, Vagge I, Brusa G, Cerabolini BEL (2014) The intimacy between sexual traits and Grime’s CSR strategies for orchids coexisting in semi-natural calcareous grassland at the Olive Lawn. Plant Ecol 215:495–505

    Article  Google Scholar 

  • Poorter L (2007) Are species adapted to their regeneration niche, adult niche, or both? Am Nat 169:433–442

    Article  PubMed  Google Scholar 

  • Rezende VL, Eisenlohr PV, Vibrans AC, de Oliveira AT (2015) Humidity, low temperature extremes, and space influence floristic variation across an insightful gradient in the subtropical Atlantic forest. Plant Ecol 216:759–774

    Article  Google Scholar 

  • Ricotta C (2007) A semantic taxonomy for diversity measures. Acta Biotheor 55:23–33

    Article  PubMed  Google Scholar 

  • Roy BA, Widmer A (1999) Floral mimicry: a fascinating yet poorly understood phenomenon. Trends Plant Sci 4:325–330

    Article  PubMed  Google Scholar 

  • Santiago A, Herranz JM, Copete E, Ferrandis P (2013) Species-specific environmental requirements to break seed dormancy: implications for selection of regeneration niches in three Lonicera (Caprifoliaceae) species. Botany-Botanique 91:225–233

    Article  Google Scholar 

  • Sharrock S, Jones M (2009) Conserving Europe’s threatened plants. Progress towards target 8 of the global strategy for plant conservation. Botanic Gardens Conservation International, Richmond

    Google Scholar 

  • Silvertown J, Wells DA, Gillman M, Dodd ME, Robertson H, Lakhani KH (1994) Short-term effects and long-term aftereffects of fertilizer application on the flowering population of Green-winged Orchid Orchis morio. Biol Conserv 69:191–197

    Article  Google Scholar 

  • Sletvold N, Ågren J (2011) Nonadditive effects of floral display and spur length on reproductive success in a deceptive orchid. Ecology 92:2167–2174

    Article  PubMed  Google Scholar 

  • Sletvold N, Ågren J (2014) There is more to pollinator-mediated selection than pollen limitation. Evolution 68:1907–1918

    Article  PubMed  Google Scholar 

  • Sletvold N, Grindeland JM, Ågren J (2013) Vegetation context influences the strength and targets of pollinator-mediated selection in a deceptive orchid. Ecology 94:1236–1242

    Article  PubMed  Google Scholar 

  • Sonkoly J, Vojtkó EA, Tökölyi J, Török P, Sramkó G, Illyés Z, Molnár VA (2016) Higher seed number compensates for lower fruit-set in deceptive orchids. J Ecol 104:343–351

    Article  Google Scholar 

  • Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Ann Rev Ecol Evol Syst 35:435–466

    Article  Google Scholar 

  • Svenning JC, Fabbro T, Wright SJ (2008) Seedling interactions in a tropical forest in Panama. Oecologia 155:143–150

    Article  PubMed  Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecol Biogeogr 14:347–357

    Article  Google Scholar 

  • Tsiftsis S, Tsiripidis I, Karagiannakidou V, Alifragis D (2008) Niche analysis and conservation of the orchids of east Macedonia (NE Greece). Acta Oecol 33:27–35

    Article  Google Scholar 

  • Tsvuura Z, Griffiths ME, Gunton RM, Franks PJ, Lawes MJ (2010) Ecological filtering by a dominant herb selects for shade tolerance in the tree seedling community of coastal dune forest. Oecologia 164:861–870

    Article  PubMed  Google Scholar 

  • Valkó O, Török P, Matus G, Tóthmérész B (2012) Is regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows? Flora 207:303–309

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vogt-Schilb H, Munoz F, Richard F, Schatz B (2015) Recent declines and range changes of orchids in Western Europe (France, Belgium and Luxembourg). Biol Conserv 190:133–141

    Article  Google Scholar 

  • Wake CM (2007) Micro-environment conditions, mycorrhizal symbiosis, and seed germination in Cypripedium candidum: strategies for conservation. Lankesteriana 7:423–426

    Google Scholar 

  • Walsh RP, Arnold PM, Michaels HJ (2014) Effects of pollination limitation and seed predation on female reproductive success of a deceptive orchid. AoB Plants 6:1–12

    Article  Google Scholar 

  • Willems JH, Peet RK, Bik L (1993) Changes in chalk-grassland structure and species richness resulting from selective nutrient additions. J Veg Sci 4:203–212

    Article  Google Scholar 

  • Willimer P (2011) Pollinator and floral ecology. Princeton University Press, Princeton

    Google Scholar 

  • Wotavova K, Balounova Z, Kindlmann P (2004) Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol Conserv 118:271–279

    Article  Google Scholar 

  • Zhang CH, Willis CG, Burghardt LT, Qi W, Liu K, Souza PRM, Ma Z, Du GZ (2014) The community-level effect of light on germination timing in relation to seed mass: a source of regeneration niche differentiation. New Phytol 204:496–506

    Article  PubMed  Google Scholar 

  • Ziffer-Berger J, Weisberg PJ, Cablk ME, Osem Y (2014) Spatial patterns provide support for the stress-gradient hypothesis over a range-wide aridity gradient. J Arid Envir 102:27–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Buffa.

Additional information

Communicated by Timothy Bell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slaviero, A., Del Vecchio, S., Pierce, S. et al. Plant community attributes affect dry grassland orchid establishment. Plant Ecol 217, 1533–1543 (2016). https://doi.org/10.1007/s11258-016-0666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-016-0666-x

Keywords

Navigation