Skip to main content

Advertisement

Log in

Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33 % by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70 % (PCA-MLRA) and 67 % (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alastuey A, Querol X, Rodriguez S, Plana F, Lopez-Soler A, Mantilla E (2004) Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmos Environ 38(30):4979–4992

    CAS  Google Scholar 

  • Alastuey A, Moreno N, Querol X, Viana M, Artiñano B, Luaces JA, Basora J, Guerra A (2007) Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. Atmos Environ 41:6366–6378. doi:10.1016/j.atmosenv.2007.03.015

    CAS  Google Scholar 

  • Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA (2006) Approaching PM2.5 and PM2.5-10 source apportionment by mass balance analysis, principal component analysis and particle size distribution. Sci Total Environ 368:663–674

    CAS  Google Scholar 

  • Amodio M et al (2007) Fine Particulate Matter in Apulia (South Italy): Chemical Characterization. In: O’ Dowd C, Wagner PE (eds) Nucleation and Atmospheric Aerosols. 17th International Conference; Part XI, Galway, Ireland, pp 1235–1238. doi:10.1007/978-1-4020-6475-3_245

    Google Scholar 

  • ARPA-EMR (2005) Caratterizzazione chimico-fisica del particolato atmosferico nelle classi dimensionali tra 10 e 0.4 μm. Progetto PolveRe 2a fase http://www.arpa.emr.it/cms3/documenti/_cerca_doc/aria/aria_re/polvere.pdf Accessed 16 January 2013 (in Italian)

  • ARPA-EMR (2013) Calmet meteorological pre-processor. http://www.arpa.emr.it/sim/?qualita_aria/turbolenza Accessed 03 April 2013 (in Italian)

  • Barkan J, Alpert P, Kutiel H, Kishcha P (2005) Synoptics of dust transportation days from Africa toward Italy and central Europe. J Geophys Res 110, D07208. doi:10.1029/2004JD005222

    Google Scholar 

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38(19):3025–3038

    CAS  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108

    CAS  Google Scholar 

  • Bonasoni P, Stohl A, Cristofanelli P, Calzolari F, Colombo T, Evangelisti F (2000) Background ozone variations at Mt. Cimone Station. Atmos Environ 34:5183–5189

    CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, Oxford

    Google Scholar 

  • Bukowiecki N, Lienemann P, Hill M, Figi R, Richard A, Furger M, Rickers K, Falkenberg G, Zhao Y, Cliff SS, Prevot AS, Baltensperger U, Buchmann B, Gehrig R (2009) Real-world emission factors for antimony and other brake wear related trace elements: Size-segregated values for light and heavy duty vehicles. Environ Sci Technol 43(21): 8072–8078. doi:10.1021/es9006096

    Google Scholar 

  • Callén MS, de la Cruz MT, López JM, Navarro MV, Mastral AM (2009) Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere 76(8):1120–1129

    Google Scholar 

  • Camuffo D, Van Grieken R, Busse HJ, Sturaro G, Valentino A, Bernardi A, Blades N, Shooter D, Gysels C, Deutsch F, Wieser M, Kim O, Ulrych U (2001) Environmental monitoring in four European museums. Atmos Environ 35:S127–S140

    CAS  Google Scholar 

  • Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2010) A review of natural aerosol interactions and feedbacks within the Earth system. Atmos Chem Phys 10:1701–1737

    CAS  Google Scholar 

  • CEN (Comité Européen de Normalisation) (2005) Ambient air quality—standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particulate matter, Ref. No. EN14907:2005

  • Chan YC, Simpson RW, McTainsh GH, Vowles PD, Cohen DD, Bailey GM (1997) Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmos Environ 31:3773–3785

    CAS  Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430

    CAS  Google Scholar 

  • Colb CE, Worsnop DR (2012) Chemistry and composition of atmospheric aerosol particles. Annu Rev Phys Chem 63:471–491

    Google Scholar 

  • Dan M, Zhuang G, Li X, Tao H, Zhuang Y (2004) The characteristics of carbonaceous species and their sources in PM2.5 in Beijing. Atmos Environ 38:3443–3452

    CAS  Google Scholar 

  • Davidson CI, Phalen RF, Solomon PA (2005) Airborne particulate matter and human health: a review. Aerosol Sci Tech 39(8):737–749

    CAS  Google Scholar 

  • D’Alessio A, D’Anna A, Ciajolo A, Faravelli T, Ranzi E (2005) Particolato fine e ultrafine. Emissione da processi di combustione. La chimica e l’Industria Anno 87 n 1:16–24, in Italian

    Google Scholar 

  • Draxler RR (1999) HYSPLIT4 user’s guide. NOAA Tech. Memo. ERL ARL-230. NOAA Air Resources Laboratory, Silver Spring MD

    Google Scholar 

  • Draxler RR, Rolph GD (2011) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring MD

  • EC (European Commission) (1999) Council Directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi!celexplus!prod!CELEXnumdoc&lg=EN&numdoc=31999L0030 Accessed 16 January 2013

  • EC (European Commission) (2004) Second Position Paper on Particulate Matter. In: CAFE Working Group on Particulate Matter (ed)

  • EEA (European Environment Agency) (2011) Laying the foundations for greener transport. TERM 2011: transport indicators tracking progress towards environmental targets in Europe. European Environment Agency, Report N°7, Copenhagen, Denmark http://www.eea.europa.eu/publications/foundations-for-greener-transport Accessed 16 January 2013

  • EPA (Environmental Protection Agency) (2008) Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide. U.S. Environmental Protection Agency Office of Research and Development, Washington, DC 20460 http://www.epa.gov/heasd/products/pmf/EPA%20PMF%203.0%20User%20Guide%20v16_092208_final.pdf Accessed 16 January 2013

  • Escudero S et al (2005) Wet and dry African dust episodes over Eastern Spain. J Geophys Res 110:D18S08. doi:10.1029/2004JD004731

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (1986) Atmospheric chemistry. Fundamentals and experimental techniques. Wiley, New York

    Google Scholar 

  • Fischer H, Kormann R, Klüpfel T, Gurk C, Königstedt R, Parchatka U, Mühle J, Rhee TS, Brenninkmeijer CAM, Bonasoni P, Stohl A (2000) Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone. Atmos Chem Phys 3:725–738. doi:10.5194/acp-3-725-2003

    Google Scholar 

  • Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M et al (eds) Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Frati L, Caprasecca E, Santoni S, Gaggi C, Guttova A, Gaudino S, Pati A, Rosamilia S, Pirintsos SA, Loppi S (2006) Effects of NO2 and NH3 from road traffic on epiphytic lichens. Environ Pollut 142:58–64

    CAS  Google Scholar 

  • Furusjö E, Sternbeck J, Cousins AP (2007) PM10 source characterization at urban and highway roadside locations. Sci Total Environ 387:206–219. doi:10.1016/j.scitotenv.2007.07.021

    Google Scholar 

  • Garg BD, Cadle SH, Mulawa P, Groblicki PJ, Laroo C, Parr GA (2000) Brake wear particulate matter emissions. Environ Sci Technol 34(21):4463–4469. doi:10.1021/es001108h

    CAS  Google Scholar 

  • Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44(2):141–146. doi:10.1016/j.atmosenv.2009.10.016

    CAS  Google Scholar 

  • Gilbert NL, Woodhouse S, Stieb DM, Brook JR (2003) Ambient nitrogen dioxide and distance from a major highway. Sci Total Environ 312:43–46

    CAS  Google Scholar 

  • Gilli G, Pignata C, Schilirò T, Bono R, La Rosa A, Traversi D (2007) The mutagenic hazards of environmental PM2.5 in Turin. Environ Res 103:168–175. doi:10.1016/j.envres.2006.08.006

    CAS  Google Scholar 

  • Godoi RHM, Kontozova V, Van Grieken R (2006) The shielding effect of the protective glazing of historical stained glass windows from an atmospheric chemistry perspective: case study Saint Chapelle, Paris. Atmos Environ 40:1255–1265

    CAS  Google Scholar 

  • Guarnieri F, Calastrini F, Busillo C, Pasqui M, Becagli S, Lucarelli F, Calzolai G, Nava S, Udisti R (2011) Mineral dust aerosol from Saharan desert by means of atmospheric, emission, dispersion modeling. Biogeosci Discuss 8:7313–7338. doi:10.5194/bgd-8-7313-2011

    Google Scholar 

  • Harrison RM, Smith DJT, Pio CA, Castro LM (1997) Comparative receptor modelling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan). Atmos Environ 31(20):3309–3321

    CAS  Google Scholar 

  • Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651. doi:10.1016/j.atmosenv.2004.10.027

    CAS  Google Scholar 

  • Iijima A, Sato K, Yano K, Kato M, Kozawa K, Furuta N. (2008) Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ Sci Technol 42(8):2937–2942. doi:10.1021/es702137g

    Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2003a) Source identification of Atlanta aerosol by positive matrix factorization. J Air Waste Manage 53:731–739

    CAS  Google Scholar 

  • Kim E, Larson TV, Hopke PK, Slaughter C, Sheppard LE, Claiborn C (2003b) Source identification of PM2.5 in an arid Northwest U.S. city by positive matrix factorization. Atmos Res 66:291–305

    CAS  Google Scholar 

  • Koçak M, Theodosi C, Zarmpas P, Im U, Bougiatoti A, Yenigun O, Mihapoulos N (2011) Particulate matter (PM10) in Istanbul: origin, source areas and potential impact on surrounding regions. Atmos Environ 45:6891–6900. doi:10.1016/j.atmosenv.2010.10.007

    Google Scholar 

  • Kong S, Ji Y, Lu B, Chen L, Han B, Li Z, Bai Z (2011) Characterization of PM10 source profiles for fugitive dust in Fushun—a city famous for coal. Atmos Environ 45(30):5351–5365. doi:10.1016/j.atmosenv.2011.06.050

    CAS  Google Scholar 

  • Lantzy RJ, McKenzie FT (1979) Atmospheric trace metals: global cycles and assessment of man’s impact. Geochim Cosmochim Acta 43:511–525

    CAS  Google Scholar 

  • Lee E, Chan CK, Paatero P (1999) Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmos Environ 33:3201–3212

    CAS  Google Scholar 

  • Lee S, Liu W, Wang Y, Russell AG, Edgerton ES (2008) Source apportionment of PM2.5: comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmos Environ 42:4126–4237. doi:10.1016/j.atmosenv.2008.01.025

    CAS  Google Scholar 

  • Lin C-C, Huang K-L, Chen S-J, Liu S-C, Tsai J-H, Lin Y-C, Lin W-Y (2008) NH4 +, NO3 , and SO4 2− in roadside and rural size-resolved particles and transformation of NO2/SO2 to nanoparticle-bound NO3 /SO4 2−. Atmos Environ 43(17):2731–2736. doi:10.1016/j.atmosenv.2009.02.058

    Google Scholar 

  • Lonati G, Giugliano M, Butelli P, Romele L, Tardivo R (2005) Major chemical components of PM2.5 in Milan (Italy). Atmos Environ 39:1925–1934. doi:10.1016/j.atmosenv.2004.12.012

    CAS  Google Scholar 

  • Lonati G, Giugliano M, Ozgen S (2008) Primary and secondary components of PM2.5 in Milan (Italy). Environ Int 34:665–670. doi:10.1016/j.envint.2007.12.009

    CAS  Google Scholar 

  • Lucarelli F, Mandò PA, Nava S, Valerio M, Prati P, Zucchiatti A (2000) Elemental composition of urban aerosol collected in Florence, Italy. Environ Monit Assess 65:165–173. doi:10.1023/A:1006486208406

    CAS  Google Scholar 

  • Mahowald NM et al (2005) Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochem Cy 19:GB4030. doi:10.1029/2005GB002541

    Google Scholar 

  • Marcazzan GM, Ceriani M, Valli G, Vecchi R (2003) Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modelling. Sci Total Environ 317:137–147. doi:10.1016/S0048-9697(03)00368-1

    CAS  Google Scholar 

  • Marenco F, Bonasoni P, Calzolari F, Ceriani M, Chiari M, Cristofanelli P, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Valli G, Vecchi R (2006) Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: Source apportionment and transport mechanisms. J Geophys Res 111, D24202. doi:10.1029/2006JD007145

    Google Scholar 

  • Masiol M, Squizzato S, Ceccato D, Rampazzo G, Pavoni B (2012a) A chemometric approach to determine local and regional sources of PM10 and its geochemical composition in a coastal area. Atmos Environ 54:127–133

    CAS  Google Scholar 

  • Masiol M, Squizzato S, Ceccato D, Rampazzo G, Pavoni B (2012b) Determining the influence of different atmospheric circulation patterns on PM10 chemical composition in a source apportionment study. Atmos Environ 63:117–124

    CAS  Google Scholar 

  • Matassoni L, Pratesi G, Centioli D, Cadoni F, Malesani P, Caricchia AM, di Bucchianico AD (2009) Saharan dust episodes in Italy: influence on PM10 daily limit value (DLV) exceedances and the related synoptic. J Environ Monitor 11:1586–1594

    CAS  Google Scholar 

  • Matta E, Facchini MC, Decesari S, Mircea M, Cavalli F, Fuzzi S, Putaud J-P, Dell’Acqua A (2002) Chemical mass balance of size-segregated atmospheric aerosol in an urban area of the Po Valley, Italy. Atmos Chem Phys Discuss 2:2167–2208. doi:10.5194/acpd-2-2167-2002

    Google Scholar 

  • Matta E, Facchini MC, Decesari S, Mircea M, Cavalli F, Fuzzi S, Putaud J-P, Dell’Acqua A (2003) Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy. Atmos Chem Phys 3:623–637. doi:10.5194/acp-3-623-2003

    CAS  Google Scholar 

  • Maxwell JA, Teesdale WJ, Campbell JL (1995) The Guelph PIXE package II. Nucl Instrum Meth B 95:407–421

    CAS  Google Scholar 

  • Mazzei F, D’Alessandro A, Lucarelli F, Marenco F, Nava S, Prati P, Valli G, Vecchi R (2006) Elemental composition and source apportionment of particulate matter near a large steel plant in Genoa (Italy). Nucl Instrum Meth B 249(1–2):548–551

    CAS  Google Scholar 

  • Meloni D, di Sarra A, Monteleone F, Pace G, Piacentino S, Sferlazzo DM (2008) Seasonal transport patterns of intense Saharan dust events at the Mediterranean island of Lampedusa. Atmos Res 88:134–148. doi:10.1016/j.atmosres.2007.10.007

    Google Scholar 

  • Miller JC, Miller JN (1993) Statistics for analytical chemistry, 3rd edn. Ellis Horwood PTR Prentice Hall, Harlow

    Google Scholar 

  • Mitra AP, Morawska L, Sharma C, Zhang J (2002) Chapter two: methodologies for characterisation of combustion sources end for quantification of their emissions. Chemosphere 49(9):903–922

    CAS  Google Scholar 

  • Mittner P, Ceccato D, Del Maschio S, Schiavuta E, Chiminello F, Buso P, Agostini S, Prodi V, Mazza M, Belardinelli F (1996) A multiannual experiment on tropospheric aerosols at Terranova Bay (Antarctica): role of PIXE analysis and related techniques. Nucl Instrum Meth B 109(110):375–380

    Google Scholar 

  • Morawska L, Zhang J (2002) Combustion sources of particles. 1. Health relevance and source signatures. Chemosphere 49:1045–1058

    CAS  Google Scholar 

  • Nava S, Becherini F, Bernardi A, Bonazza A, Chiari M, García-Orellana I, Lucarelli F, Ludwig F, Migliori A, Sabbioni C, Udisti R, Valli G, Vecchi R (2010) An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: The case study of Michelozzo’s Courtyard in Florence (Italy). Sci Total Environ 408:1403–1413

    CAS  Google Scholar 

  • Nava S, Becagli S, Calzolai G, Chiari M, Lucarelli F, Prati P, Traversi R, Udisti R, Valli G, Vecchi R (2012) Saharan dust impact in central Italy: an overview on three years elemental data records. Atmos Environ 60:444–462

    CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126. doi:10.1002/env.3170050203

    Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab 37(1):23–35. doi:10.1016/S0169-7439(96)00044-5

    CAS  Google Scholar 

  • Paatero P (1999) The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J Comput Graph Stat 8(4):854–888. doi:10.2307/1390831

    Google Scholar 

  • Pachon JE, Weber RJ, Zhang X, Mulholland JA, Russell AG (2013) Revising the use of potassium (K) in the source apportionment of PM2.5. Atmos Poll Res 4:14–21. doi:10.5094/APR.2013.002

    CAS  Google Scholar 

  • Pant P, Harrison RM (2012) Critical review of receptor modelling for particulate matter: a case study in India. Atmos Environ 49:1–12. doi:10.1016/j.atmosenv.2011.11.060

    CAS  Google Scholar 

  • Pathak RK, Louie PKK, Chan CK (2004) Characteristics of aerosol acidity in Hong Kong. Atmos Environ 38(19):2965–2974

    CAS  Google Scholar 

  • Pathak RK, Wu WS, Wang T (2009) Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmos Chem Phys 9:1711–1722. doi:10.5194/acp-9-1711-2009

    CAS  Google Scholar 

  • Polissar AV, Hopke PK, Poirot RL (2001) Atmospheric aerosol over Vermont: chemical composition and sources. Environ Sci Technol 35:4604–4621

    CAS  Google Scholar 

  • Ponce NA, Hoggatt KJ, Wilhelm M, Ritz B (2005) Preterm birth: the interaction of traffic-related air pollution with economic hardship in Los Angeles neighborhood. Am J Epidemiol 162(2):140–148. doi:10.1093/aje/kwi173

    Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage 56:709–742

    CAS  Google Scholar 

  • Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    CAS  Google Scholar 

  • Prather KA, Hatch CD, Grassian VH (2008) Analysis of atmospheric aerosols. Annu Rev Anal Chem 1:485–514

    CAS  Google Scholar 

  • Putaud J-P, Raes F, Van Dingenen R, Brüggemann E, Facchini M-C, Decesari S et al (2004) A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595. doi:10.1016/j.atmosenv.2004.01.041

    CAS  Google Scholar 

  • Putaud J-P, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyris J et al (2010) A European aerosol phenomenology—3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320. doi:10.1016/j.atmosenv.2009.12.011

    CAS  Google Scholar 

  • Qin Y, Oduyemi K (2003) Atmospheric aerosol source identification and estimates of source contributions to air pollution in Dundee, UK. Atmos Environ 37:1799–1809. doi:10.1016/S1352-2310(03)00078-5

    CAS  Google Scholar 

  • Qin Y, Kim E, Hopke PK (2006) The concentrations and sources of PM2.5 in metropolitan New York City. Atmos Environ 40:S312–S332. doi:10.1016/j.atmosenv.2006.02.025

    CAS  Google Scholar 

  • Querol X, Alastuey A, Puicercus JA, Mantilla E, Miró JV, López-Soler A, Plana F, Artiñano B (1998) Seasonal evolution of suspended particles around a large coal-fired power station particle levels and sources. Atmos Environ 32(11):1963–1978

    CAS  Google Scholar 

  • Querol X, Alastuey A, Rodríguez S, Plana F, Ruiz CR, Cots N, Massagué G, Puig O (2001) PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos Environ 35(36):6407–6419

    CAS  Google Scholar 

  • Querol X, Pey J, Pandolfi M, Alastuey A, Cusack M, Pèrez N et al (2009) African dust contributions to mean ambient PM10 mass-levels across the Mediterranean basin. Atmos Environ 43:4266–4277. doi:10.1016/j.atmosenv.2009.06.013

    CAS  Google Scholar 

  • Ramadan Z, Song XH, Hopke PK (2000) Identification of sources of Phoenix aerosol by positive matrix factorization. J Air Waste Manag Assoc 50(8):1308–1320

    CAS  Google Scholar 

  • Rampazzo G, Masiol M, Visin F, Pavoni B (2008) Gaseous and PM10-bound pollutants monitored in three sites with differing environmental conditions in the Venice area (Italy). Water, Air Soil Pollut 195 Numbers 1–4:161–176. doi:10.1007/s11270-008-9735-7

    Google Scholar 

  • Reff A, Eberly SI, Bhave PV (2007) Receptor modeling of ambient particulate matter data using Positive Matrix Factorization: Review of existing methods. J Air Waste Manage 57:146–154

    CAS  Google Scholar 

  • Riley JP, Chester R (1971) Introduction to marine chemistry, 1st edn. Academic, London

    Google Scholar 

  • Rodríguez S, Querol X, Alastuey A, Viana M, Alarcón M, Mantilla E, Ruiz CR (2004) Comparative PM10-PM2,5 source contribution study at rural urban and industrial cities during PM episodes in Eastern Spain. Sci Total Environ 328:95–113. doi:10.1016/S0048-9697(03)00411-X

    Google Scholar 

  • Rodríguez S, Van Dingenen R, Putaud JP, Martins-Dos Santos S, Roselli D (2005) Nucleation and growth of new particles in the rural atmosphere of Northern Italy-relationship to air quality monitoring. Atmos Environ 39(36):6734–6746

    Google Scholar 

  • Rolph GD (2003) Real-Time Environmental Applications and Display System (READY). Silver Spring MD: NOAA Air Resources Laboratory. http://www.arl.noaa.gov/ready/hysplit4.html Accessed 17 January 2013

  • Salma I, Maenhaut W, Zemplén-Papp E, Záray G (2001) Comprehensive characterization of atmospheric aerosols in Budapest, Hungary: physicochemical properties of inorganic species. Atmos Environ 35(25):4367–4378

    CAS  Google Scholar 

  • Schaap M, Mueller K, ten Brink HM (2002) Constructing the European aerosol nitrate concentration field from quality analyzed data. Atmos Environ 36(8):1323–1335

    CAS  Google Scholar 

  • Schaap M, van Loon M, ten Brink HM, Dentener FJ, Builtjes PJH (2004a) Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos Chem Phys 4:857–874. doi:10.5194/acp-4-857-2004

    CAS  Google Scholar 

  • Schaap M, Spindler G, Schulz M, Acker K, Maenhaut W, Berner A, Wieprecht W, Streit N, Müller K, Brüggeman E, Chi X, Putaud JP, Hitzenberger R, Puxbaum H, Baltensperger U, ten Brink H (2004b) Artefacts in the sampling of nitrate studied in the “INTERCOMP” campaigns of EUROTRAC-AEROSOL. Atmos Environ 38:6487–6496

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. From air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  • Squizzato S, Masiol M, Brunelli A, Pistollato S, Tarabotti E, Rampazzo G, Pavoni B (2013) Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmos Chem Phys 13:1927–1939. doi:10.5194/acp-13-1927-2013

  • Sutton MA, Dragosits U, Tang YS, Fowler D (2000) Ammonia emissions from non-agricultural sources in the UK. Atmos Environ 34:855–869

    CAS  Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci Total Environ 400:270–282. doi:10.1016/j.scitotenv.2008.06.007

    CAS  Google Scholar 

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contribution to inhalable particulate matter pollution in Metropolitan Boston. Atmos Environ 19:9–25

    CAS  Google Scholar 

  • Thurston GD, Ito K, Lall R (2011) A source apportionment of U.S. fine particulate matter air pollution. Atmos Environ 45:3924–3936. doi:10.1016/j.atmosenv.2011.04.070

    CAS  Google Scholar 

  • Tositti L, Riccio A, Sandrini S, Brattich E, Baldacci D, Parmeggiani S, Cristofanelli P, Bonasoni P (2012) Short-term climatology of PM10 at a high altitude background station in southern Europe. Atmos Environ 65:145–152. doi:10.1016/j.atmosenv.2012.10.051

    Google Scholar 

  • Usher CR, Michel AE, Grassian VH (2003) Reactions on mineral dust. Chem Rev 103:4883–4939

    CAS  Google Scholar 

  • Vallius M, Janssen NAH, Heinrich J, Ruuskanen GH, Cyrys J, Griekene RV, de Hartog JJ, Kreyling WG, Pekkanen J (2005) Sources and elemental composition of ambient PM2.5 in three European cities. Sci Total Environ 337:147–162. doi:10.1016/j.scitotenv.2004.06.018

    CAS  Google Scholar 

  • Vecchi R, Marcazzan G, Valli G, Cerini M, Antoniazzi C (2004) The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmos Environ 38:4437–4446. doi:10.1016/j.atmosenv.2004.05.029

    CAS  Google Scholar 

  • Vecchi R, Chiari M, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Silvani F, Valli G (2008) A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos Environ 42(9):2240–2253. doi:10.1016/j.atmosenv.2007.11.039

    CAS  Google Scholar 

  • Vecchi R, Valli G, Fermo P, D’Alessandro A, Piazzalunga A, Bernardoni V (2009) Organic and inorganic sampling artefact assessment. Atmos Environ 43:1713–1720

    CAS  Google Scholar 

  • Viana M, Querol X, Alastuey A, Gil JI, Menéndez M (2006) Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65(11):2411–2418

    CAS  Google Scholar 

  • Viana M, Querol X, Götschi T, Alastuey A, Sunyer J, Forsberg B et al (2007) Source apportionment of ambient PM2.5 at five Spanish centres of the European Community Respiratory Health Survey (ECRHS II). Atmos Environ 41:1395–1406. doi:10.1016/j.atmosenv.2006.10.016

    CAS  Google Scholar 

  • Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévot ASH, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008a) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39(10):827–849

    CAS  Google Scholar 

  • Viana M, Pandolfi M, Minguillon MC, Querol X, Alastuey A, Monfort E, Celades I (2008b) Inter-comparison of receptor models for PM source apportionment: case study in an industrial area. Atmos Environ 42:3820–3832. doi:10.1016/j.atmosenv.2007.12.056

    CAS  Google Scholar 

  • Voutsa D, Samara C, Kouimtzis T, Ochsenkuhn K (2002) Elemental composition of airborne particulate matter in the multi-impacted area of Thessaloniki, Greece. Atmos Environ 36(28):4453–4462

    CAS  Google Scholar 

  • Wahlin P, Berkowicz R, Palmgren F (2006) Characterisation of traffic-generated particulate matter in Copenhagen. Atmos Environ 40:2151–2159. doi:10.1016/j.atmosenv.2005.11.049

    CAS  Google Scholar 

  • Winkler R, Dietl F, Frank G, Thiersch J (1998) Temporal variation of 7Be and 210Pb size distributions in ambient aerosols. Atmos Environ 32:983–991

    CAS  Google Scholar 

  • Yatkin S, Bayram A (2007) Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Sci Total Environ 390(1):109–123. doi:10.1016/j.scitotenv.2007.08.059

    Google Scholar 

  • Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44:841–851

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous referees of this paper for the great help in the constructive discussion and critical review so helpful in improving the manuscript. The authors wish to thank Fondazione CARISBO for the financial support enabling us to acquire the Ion Chromatograph used in this investigation. We acknowledge NOAA for providing the HYSPLIT trajectories used in this study; Wetterzentrale for providing the synoptic maps used for the study of the Saharan Dust episode during summer 2006; PLANIGLOBE BETA for providing the map of Italy with the position of the city of Bologna where PM was sampled for this study; The Barcelona Supercomputing Center for the images from the BSC-DREAM8b (Dust REgional Atmospheric Model) model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Brattich.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

a,b,c Time series of the IC determined NH4 + moles and necessary NH4 + moles to complete neutralization of sulfuric and nitric acid during the periods: a autumn 2005; b winter 2006; c summer 2006 (JPEG 114 kb)

High resolution image (TIFF 619 kb)

Fig. 2

Average values of enrichment factors of the analyzed elements during autumn 2005, calculated considering Al as reference crustal element (JPEG 36 kb)

High resolution image (TIFF 97 kb)

Fig. 3

Cluster analysis for the variables observed during the autumn 2005 campaign, calculated with Ward’s agglomerative hierarchical method and squared Euclidean distances. Similarity values are normalized to (D link/D max × 100) (JPEG 40 kb)

High resolution image (TIFF 5810 kb)

Fig. 4

Time series of the PM10 source contribution resulting from the PCA/MLRA model (JPEG 212 kb)

High resolution image (TIFF 1101 kb)

Table 1

Details about the sampling campaigns and the analyses carried on the sampled filters (DOC 37 kb)

Table 2

Comparison between the average elemental concentrations (in nanogram per cubic meter) observed in this study and in Firenze (Lucarelli et al. 2000), Milano (Marcazzan et al. 2003), and Venezia (Rampazzo et al. 2008) (DOC 66 kb)

Table 3

Diagnostic parameters on the performance obtained by PMF model: (a) intercept constant, identifying the fraction of the variable not explained by the model; (b) slope of the regression line, (c) standard error SE, estimate of the variability between experimental and retrieved from the model concentrations; (d) r 2, correlation between experimental and retrieved from the model concentrations (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tositti, L., Brattich, E., Masiol, M. et al. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy). Environ Sci Pollut Res 21, 872–890 (2014). https://doi.org/10.1007/s11356-013-1911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1911-7

Keywords

Navigation