Skip to main content
Log in

Assessment of phenolic herbicide toxicity and mode of action by different assays

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A phytotoxicity assay based on seed germination/root elongation has been optimized and used to evaluate the toxic effects of some phenolic herbicides. The method has been improved by investigating the influence of experimental conditions. Lepidium sativum was chosen as the most suitable species, showing high germinability, good repeatability of root length measurements, and low sensitivity to seed pretreatment. DMSO was the most appropriate solvent carrier for less water-soluble compounds. Three dinitrophenols and three hydroxybenzonitriles were tested: dinoterb, DNOC, 2,4-dinitrophenol, chloroxynil, bromoxynil, and ioxynil. Toxicity was also determined using the Vibrio fischeri Microtox® test, and a highly significant correlation was found between EC50 values obtained by the two assays. Dinoterb was the most toxic compound. The toxicity of hydroxybenzonitriles followed the order: ioxynil >bromoxynil >chloroxynil; L. sativum exhibited a slightly higher sensitivity than V. fischeri to these compounds. A QSAR analysis highlighted the importance of hydrophobic, electronic, and hydrogen-bonding interactions, in accordance with a mechanism of toxic action based on protonophoric uncoupling of oxidative phosphorylation. The results suggest that the seed germination/root elongation assay with L. sativum is a valid tool for the assessment of xenobiotic toxicity and can be recommended as part of a test battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Argese E, Bettiol C, Giurin G, Miana P (1999) Quantitative structure-activity relationships for the toxicity of chlorophenols to mammalian submitochondrial particles. Chemosphere 38:2281–2292

    Article  CAS  Google Scholar 

  • Argese E, Bettiol C, Marchetto D, De Vettori S, Zambon A, Miana P, Ghetti PF (2005) Study on the toxicity of phenolic and phenoxy herbicides using the submitochondrial particle assay. Toxicol In Vitro 19:1035–1043

    Article  CAS  Google Scholar 

  • Azur environmental (1998). Microtox® manual.

  • Banks MK, Schultz KE (2005) Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 167:211–219

    Article  CAS  Google Scholar 

  • Barbero P, Beltrami M, Baudo R, Rossi D (2001) Assessment of Lake Orta sediments phytotoxicity after the liming treatment. J Limnol 60:269–276

    Article  Google Scholar 

  • Beltrami M, Rossi D, Baudo R (1999) Phytotoxicity assessment of Lake Orta sediments. Aquat Ecosys Health Manage 2:391–401

    CAS  Google Scholar 

  • Carpenter K, Heywood BJ (1963) Herbicidal action of 3:5-dihalogeno-4-hydroxybenzonitriles. Nature 200:28–29

    Article  CAS  Google Scholar 

  • Casida JE (2009) Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol 22:609–619

    Article  CAS  Google Scholar 

  • Devesa-Rey R, Moldes AB, Dìaz-Fierros F, Barral MT (2008) Toxicity of Anllòns river sediment extracts using Microtox® and the Zucconi phytotoxicity test. Bull Environ Contam Toxicol 80:225–230

    Article  CAS  Google Scholar 

  • Di Salvatore M, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464

    Article  Google Scholar 

  • El Jay A (1996) Toxic effects of organic solvents on the growth of Chlorella vulgaris and Selenastrum capricornutum. Bull Environ Contam Toxicol 57:191–198

    Article  Google Scholar 

  • Escher BI, Schwarzenbach RP (1996) Partitioning of substituted phenols in liposome-water, biomembrane-water, and octanol-water sistem. Environ Sci Technol 30:260–270

    Article  CAS  Google Scholar 

  • Fargašová A (1994) Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds. Bull Environ Contam Toxicol 52:452–456

    Article  Google Scholar 

  • Fedtke C, Duke SO (2005) Herbicides. In: Hock B, Elstner EF (eds) Plant Toxicology, 4th edn. Marcel Dekker, New York, pp 247–330

    Google Scholar 

  • Feng L, Wang L, Zhao Y, Song B (1996) Effects of substituted anilines and phenols on root elongation of cabbage seed. Chemosphere 32:1575–1583

    Article  CAS  Google Scholar 

  • Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112

    Article  Google Scholar 

  • Fobbe R, Kuhlmann B, Nolte J, Preuss G, Skark G, Zullei-Seibert N (2006) Polar herbicides and metabolites. In: Reemtsma T, Jekel M (eds) Organic pollutants in the water cycle. Wiley, Weinheim, pp 121–153

    Chapter  Google Scholar 

  • Gasiewicz TA (1991) Nitro compounds and related phenolic pesticides. In: Hayes WJ, Lawes ER (eds) Handbook of pesticides toxicology, vol 3. Academic, San Diego, pp 1191–1269

    Google Scholar 

  • Gong P, Wilke BM, Strozzi E, Fleischmann S (2001) Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere 44:491–500

    Article  CAS  Google Scholar 

  • Gramatica P, Santagostino A, Bolzacchini E, Rindone B (2002) Atmospheric monitoring, toxicology and QSAR modelling of nitrophenols. Fres Environ Bull 11:757–762

    CAS  Google Scholar 

  • Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195

    Article  CAS  Google Scholar 

  • Hillis DG, Fletcher J, Solomon KR, Sibley PK (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Contam Toxicol 60:220–232

    Article  CAS  Google Scholar 

  • Hulzebos EM, Adema DMM, Dirven-Van Breemen EM, Henzen L, Van Gestel V (1991) QSARs in phytotoxicity. Sci Total Environ 109–110:493–497

    Article  Google Scholar 

  • Hutchinson TH, Shillabeer N, Winter MJ, Pickford DB (2006) Acute and chronic effects of carrier solvents in aquatic organisms: a critical review. Aquatic Toxicol 76:69–92

    Article  CAS  Google Scholar 

  • Jin C, Chen Q, Sun R, Zhou Q, Liu J (2009) Eco-toxic effects of sulfadiazine sodium, sulfamonomethoxine sodium and enrofloxacin on wheat, Chinese cabbage and tomato. Ecotoxicology 7:878–885

    Article  Google Scholar 

  • Kearney PC, Kaufman DD (1975) Phenols. In: Kearney PC, Kaufman DD (eds) Herbicides: chemistry, degradation and mode of action. Marcel Dekker, New York, pp 582–707

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Env Poll 150:243–250

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  Google Scholar 

  • Manzo S, Rocco A, Carotenuto R, De Luca PF, Miglietta ML, Rametta G, Di Francia G (2011) Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ Sci Poll Res 18:756–763

    Article  CAS  Google Scholar 

  • Montvydienė D, Marčiulionienė D (2004) Assessment of toxic interactions of heavy metals in a multicomponent mixture using Lepidium sativum and Spirodela polyrrhiza. Environ Toxicol 19:351–358

    Article  Google Scholar 

  • Moore MT, Kröger R (2010) Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Arch Environ Contam Toxicol 59:574–581

    Article  CAS  Google Scholar 

  • Nolte J, Heimlich F, Graβ B, Zullei-Seibert N, Preuβ G (1995) Studies on the behaviour of dihalogenated hydroxybenzonitriles in water. Fres J Anal Chem 351:88–91

    Article  CAS  Google Scholar 

  • OECD (1984) Guidelines for testing of chemicals no.208, Terrestrial Plants, Growth Test. Organization for the Economic Cooperation and Development, Paris

    Google Scholar 

  • OECD (2006) Guidelines for the testing of chemicals, terrestrial plant test: seedling emergence and seedling growth test. Organization for the Economic Cooperation and Development, Paris

    Google Scholar 

  • Okumura Y, Koyama J, Takaku H, Satoh H (2001) Influence of organic solvents on the growth of marine microalgae. Arch Environ Contam Toxicol 41:123–128

    Article  CAS  Google Scholar 

  • Reynolds T (1977) Comparative effects of aliphatic compounds on inhibition of lettuce fruit germination. Ann Bot 41:637–648

    CAS  Google Scholar 

  • Rodriguez-Ruiz A, Asensio V, Zaldibar B, Soto M, Marigómez I (2014) Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. Environ Sci Pollut Res 21:9689–9708

    Article  CAS  Google Scholar 

  • Salizzato M, Pavoni B, Volpi Ghirardini A, Ghetti PF (1998) Sediment toxicity measured using Vibrio fischeri as related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36:2949–2968

    Article  CAS  Google Scholar 

  • Sawhney VK, Srivastava LM (1977) Comparative effects of cytochalasin B and colchicine on lettuce seedlings. Ann Bot 41:271–274

    Google Scholar 

  • Siddiqui AH, Tabrez S, Ahmad M (2011) Validation of plant based bioassays for the toxicity testing of Indian waters. Environ Monit Assess 179:241–253

    Article  CAS  Google Scholar 

  • Tiquia SM (2010) Reduction of compost phytotoxicity during the process of decomposition. Chemosphere 79:506–512

    Article  CAS  Google Scholar 

  • Urrestarazu Ramos E, Vaes WHJ, Verhaar HJM, Hermens JLM (1998) Quantitative structure-activity relationships for the aquatic toxicity of polar and nonpolar narcotic pollutants. J Chem Inf Comput Sci 38:845–852

    Article  Google Scholar 

  • US EPA (1996) Ecological Effects Test Guidelines. OPPTS 850.4200. Seed Germination/Root Elongation Toxicity Test. US Environmental Protection Agency

  • US FDA (1987) Seed germination and root elongation, Environmental assessment technical guide No. 4.06. US Food & Drug Administration, Center for Food Safety and Applied Nutrition, Center for Veterinary Medicine, U.S. Department of Health and Human Services, Washington

    Google Scholar 

  • Valerio ME, García JF, Peinado FM (2007) Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Sci Total Environ 378:63–66

    Article  CAS  Google Scholar 

  • Wain RL (1963) 3:5-dihalogeno-4-hydroxybenzonitriles: new herbicides with molluscicidal activity. Nature 200:28

    Article  CAS  Google Scholar 

  • Wang W (1987a) Chromate ion as a reference toxicant for aquatic phytotoxicity tests. Environ Toxicol Chem 6:953–960

    Article  CAS  Google Scholar 

  • Wang W (1987b) Root elongation method for toxicity testing of organic and inorganic pollutants. Environ Toxicol Chem 6:409–414

    Article  CAS  Google Scholar 

  • Wang W (1991) Literature review on higher plants for toxicity testing. Water Air Soil Poll 59:381–400

    Article  CAS  Google Scholar 

  • Wang WC, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 30:289–301

    Article  CAS  Google Scholar 

  • Wang X, Dong Y, Han S, Wang L (2000) Structure-phytotoxicity relationship: comparative inhibition of selected nitrogen-containing aromatics to root elongation of Cucumis sativus. Bull Environ Contam Toxicol 64:859–865

    Article  CAS  Google Scholar 

  • Wang X, Sun C, Gao S, Wang L (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721

    Article  CAS  Google Scholar 

  • Wang X, Yu J, Wang Y, Wang L (2002a) Mechanism-based quantitative structure–activity relationships for the inhibition of substituted phenols on germination rate of Cucumis sativus. Chemosphere 46:241–250

    Article  CAS  Google Scholar 

  • Wang X, Sun C, Wang Y, Wang L (2002b) Quantitative structure-activity relationships for the inhibition toxicity to root elongation of Cucumis sativus of selected phenols and interspecies correlation with Tetrahymena pyriformis. Chemosphere 46:153–161

    Article  CAS  Google Scholar 

  • Wang X, Wang Y, Chunsheng Y, Wang L, Han S (2002c) Mechanism-based quantitative structure-phytotoxicity relationships comparative inhibition of substituted phenols on root elongation of Cucumis sativus. Arch Environ Contam Toxicol 42:29–35

    Article  CAS  Google Scholar 

  • Zucconi F, Monaco A, Forte M, De Bertoldi M (1985) Phytotoxins during the stabilization of organic matter. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier, London, pp 73–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Argese.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettiol, C., De Vettori, S., Minervini, G. et al. Assessment of phenolic herbicide toxicity and mode of action by different assays. Environ Sci Pollut Res 23, 7398–7408 (2016). https://doi.org/10.1007/s11356-015-5958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5958-5

Keywords

Navigation