Skip to main content

Advertisement

Log in

Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A total of 85 PM2.5 samples were collected at a site located in a large industrial zone (Porto Marghera, Venice, Italy) during a 1-year-long sampling campaign. Samples were analyzed to determine water-soluble inorganic ions, elemental and organic carbon, and levoglucosan, and results were processed to investigate the seasonal patterns, the relationship between the analyzed species, and the most probable sources by using a set of tools, including (i) conditional probability function (CPF), (ii) conditional bivariate probability function (CBPF), (iii) concentration weighted trajectory (CWT), and (iv) potential source contribution function (PSCF) analyses. Furthermore, the importance of biomass combustions to PM2.5 was also estimated. Average PM2.5 concentrations ranged between 54 and 16 μg m−3 in the cold and warm period, respectively. The mean value of total ions was 11 μg m−3 (range 1–46 μg m−3): The most abundant ion was nitrate with a share of 44 % followed by sulfate (29 %), ammonium (14 %), potassium (4 %), and chloride (4 %). Levoglucosan accounted for 1.2 % of the PM2.5 mass, and its concentration ranged from few ng m−3 in warm periods to 2.66 μg m−3 during winter. Average concentrations of levoglucosan during the cold period were higher than those found in other European urban sites. This result may indicate a great influence of biomass combustions on particulate matter pollution. Elemental and organic carbon (EC, OC) showed similar behavior, with the highest contributions during cold periods and lower during summer. The ratios between biomass burning indicators (K+, Cl, NO3 , SO4 2−, levoglucosan, EC, and OC) were used as proxy for the biomass burning estimation, and the contribution to the OC and PM2.5 was also calculated by using the levoglucosan (LG)/OC and LG/PM2.5 ratios and was estimated to be 29 and 18 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdalmogith SS, Harrison RM (2005) The use of trajectory cluster analysis to examine the long-range transport of secondary inorganic aerosol in the UK. Atmos Environ 39:6686–6695

    Article  CAS  Google Scholar 

  • Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11(9):4039–4072

    Article  CAS  Google Scholar 

  • Aldabe J, Elustondo D, Santamaría C, Lasheras E, Pandolfi M, Alastuey A, Querol X, Santamaría JM (2011) Chemical characterization and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (north of Spain). Atmos Res 102:191–205

    Article  CAS  Google Scholar 

  • Alves CA, Gonçalves C, Pio CA, Mirante F, Caseiro A, Tarelho L, Freitas MC, Viegas DX (2010) Smoke emissions from biomass burning in a Mediterranean shrubland. Atmos Environ 44:3024–3033

    Article  CAS  Google Scholar 

  • Andreae MO (1983) Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosol. Science 220:1148–1151

    Article  CAS  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15(4):955–966

    Article  CAS  Google Scholar 

  • Andreae MO, Andreae TW, Annegarn H, Beer J, Cachier H, le Canut P, Elbert W, Maenhaut W, Salma I, Wienhold FG, Zenker T (1998) Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. J Geophys Res 103(D24):32,119–32,128

    Article  CAS  Google Scholar 

  • ARPAV (Environmental Protection Agency of Veneto Region) (2015) Indagine sul consumo domestico di biomasse legnose in Veneto: risultati dell’indagine campionaria e stima delle emissioni in atmosfera, p. 35 [in italian]. Available at: http://www.arpa.veneto.it/temi-ambientali/aria/file-e-allegati/Consumi%20domestici%20legna%20in%20Veneto_1.0.pdf

  • Belis CA, Cancelinha J, Duane M, Forcina V, Pedroni V, Passarella R, Tanet G, Douglas K, Piazzalunga A, Bolzacchini E, Sangiorgi G (2011) Sources for PM air pollution in the Po plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo (a) pyrene. Atmos Environ 45(39):7266–7275

    Article  CAS  Google Scholar 

  • Bernardoni V, Vecchi R, Valli G, Piazzalunga A, Fermo P (2011) PM10 source apportionment in Milan (Italy) using time-resolved data. Sci Total Environ 409(22):4788–4795

    Article  CAS  Google Scholar 

  • Biegalski SR, Hopke PK (2004) Total potential source contribution function analysis of trace elements determined in aerosol samples collected near Lake Huron. Environ Sci Technol 38:4276–4284

    Article  CAS  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    Article  CAS  Google Scholar 

  • Carslaw DC (2015) The open air manual—open-source tools for analysing air pollution data. Manual for version 1.1–4, King’s College London

  • Caseiro A, Bauer H, Schmidl C, Pio CA, Puxbaum H (2009) Wood burning impact on PM10 in three Austrian regions. Atmos Environ 43:2186–2195

    Article  CAS  Google Scholar 

  • CEN (2005) European standard EN 14907: ambient air quality—standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particulate matter. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  • Cheng I, Zhang P, Blanchard P, Dalziel J, Tordon R (2013) Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada. Atmos Chem Phys 13:6031–6048

    Article  Google Scholar 

  • Chow JC, Watson JG, Fujita EM, Lu Z, Lawson DR (1994) Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmos Environ 28(12):2061–2080

    Article  CAS  Google Scholar 

  • Crilley LR, Bloss WJ, Yin J, Beddows DCS, Harrison RM, Allan JD, Young DE, Flynn M, Williams P, Zotter P, Prévôt ASH, Heal MR, Barlow JF, Halios CH, Lee JD, Szidat S, Mohr C (2015) Sources and contributions of wood smoke during winter in London: assessing local and regional influences. Atmos Chem Phys 15:3149–3171

    Article  CAS  Google Scholar 

  • Draxler RR, Rolph GD (2015) HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY. NOAA Air Resources Laboratory, College Park, MD. Website (http://www.arl.noaa.gov/HYSPLIT.php)

  • Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ 38:1275–1282

    Article  CAS  Google Scholar 

  • EC (2008) Council Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of European Communications. L152/1, 11/6/2008

  • Elsasser M, Crippa M, Orasche J, De Carlo PF, Oster M, Pitz M, Cyrys J, Gustafson TL, Pettersson BC, Schnelle-Kreis J, Prévôt ASH, Zimmermann R (2012) Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany. Atmos Chem Phys 12:6113–6128

    Article  CAS  Google Scholar 

  • Engling G, Zhang Y-N, Chan C-Y, Sang X-F, Lin M, Ho K-F, Li Y-S, Lin C-Y, Lee JJ (2011) Characterization and sources of aerosol particles over the southeastern Tibetan plateau during the Southeast Asia biomass-burning season. Tellus 63B:117–128

    Article  Google Scholar 

  • Fattore E, Paiano V, Borgini A, Tittarelli A, Bertoldi M, Crosignani P, Fanelli R (2011) Human health risk in relation to air quality in two municipalities in an industrialized area of northern Italy. Environ Res 111:1321–1327

    Article  CAS  Google Scholar 

  • Ferek RJ, Reid JS, Hobbs PV (1998) Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J Geophys Res D24:32107–32118

    Article  Google Scholar 

  • Francescato V, Antonini E (2010) La combustione del legno-Fattori di emissione e quadro normativo. Veneto Agricoltura–Settore Bioenergie e Cambiamento Climatico (in italian)

  • Fraser MP, Lakshmanan K (2000) Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ Sci Technol 34:4560–4564

    Article  CAS  Google Scholar 

  • Fuzzi S, Andreae MO, Huebert BJ, Kulmala M, Bond TC, Boy M, Doherty SJ, Guenther A, Kanakidou M, Kawamura K, Kerminen V-M, Lohmann U, Russell LM, Pöschl U (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6:2017–2038

    Article  CAS  Google Scholar 

  • Gaffney JS, Marley NA (2009) The impacts of combustion emissions on air quality and climate—from coal to biofuels and beyond. Atmos Environ 43(1):23–36

    Article  CAS  Google Scholar 

  • Giannoni M, Martellini T, Del Bubba M, Gambaro A, Zangrando R, Chiari M, Lepri L, Cincinelli A (2012) The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy). Environ Pollut 167:7–15

    Article  CAS  Google Scholar 

  • Gillies JA, Gertler AW, Sagebiel JC, Dippel WA (2001) On-road particulate matter (PM2.5and PM10) emissions in the Sepulveda tunnel, Los Angeles, California. Environ Sci Technol 35:1054–1063

    Article  CAS  Google Scholar 

  • Hays MD, Fine PM, Geron CD, Kleeman MJ, Gullett BK (2005) Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmos Environ 39(36):6747–6764

    Article  CAS  Google Scholar 

  • Hedberg E, Johansson C, Johansson L, Swietlicki E, Brorström-Lundén E (2006) Is levoglucosana suitable quantitative tracer for wood burning? Comparison with receptor modeling on trace elements in Lycksele, Sweden. J Air Waste ManageAssoc 56:1669–1678

    Article  CAS  Google Scholar 

  • Hoffmann D, Tilgner A, Iinuma Y, Herrmann H (2010) Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ Sci Technol 44:694–699

    Article  CAS  Google Scholar 

  • Hsu Y, Holsen TM, Hopke PK (2003) Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos Environ 37:545–562

    Article  CAS  Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, van Dingenen R, Ervens B, Nenes SE, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5(4):1053–1123

    Article  CAS  Google Scholar 

  • Keywood M, Kanakidou M, Stohl A, Dentener F, Grassi G, Meyer CP, Torseth K, Edwards D, Thompson AM, Lohmann U, Burrows J (2013) Fire in the air: biomass burning impacts in a changing climate. Critical Rev Environ Sci Technol 43(1):40–83

    Article  CAS  Google Scholar 

  • Khan MB, Masiol M, Formenton G, Di Gilio A, de Gennaro G, Agostinelli C, Pavoni B (2016) Carbonaceous PM2.5 and secondary organic aerosol across the Veneto region (NE Italy). Sci Total Environ 542:172–181

    Article  CAS  Google Scholar 

  • Knorr W, Lehsten V, Arneth A (2012) Determinants and predictability of global wildfire emissions. Atmos Chem Phys 12(15):6845–6861

    Article  CAS  Google Scholar 

  • Kodgule R, Salvi S (2012) Exposure to biomass smoke as a cause for airway disease in women and children. Curr Opin Allergy Clin Immunol 12(1):82–90

    Article  CAS  Google Scholar 

  • Laumbach RJ, Kipen HM (2012) Respiratory health effects of air pollution: update on biomass smoke and traffic pollution. J Allergy Clin Immunol 129(1):3–11

    Article  CAS  Google Scholar 

  • Lee AKY, Willis MD, Healy RM, Wang JM, Jeong C-H, Wenger JC, Evans GJ, Abbatt JPD (2015) Single particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium. Atmos Chem Phys 16:5561–5572

    Article  Google Scholar 

  • Lemieux PM, Lutes CC, Santoianni DA (2004) Emissions of organic air toxics from open burning: a comprehensive review. Prog Energy Combust Sci 30(1):1–32

    Article  CAS  Google Scholar 

  • Li P-H, Han B, Huo J, Lu B, Ding X, Chen L, Kong S-F, Bai Z-P, Wang B (2012) Characterization, meteorological influences and source identification of carbonaceous aerosols during the autumn-winter period in Tianjin, China. Aerosol Air Qual Res 12:283–294

    CAS  Google Scholar 

  • Lonati G, Ozgen S, Giuliano M (2007) Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy). Atmos Environ 41:4599–4610

    Article  CAS  Google Scholar 

  • Maenhaut W, Vermeylen R, Claeys M, Vercauteren J, Matheeussen C, Roekens E (2012) Assessment of the contribution from wood burning to the PM10 aerosol in Flanders, Belgium. Sci Total Environ 437:226–236

    Article  CAS  Google Scholar 

  • Masiol M, Centanni E, Squizzato S, Hofer A, Pecorari E, Rampazzo G, Pavoni B (2012a) GC-MS analyses and chemometric processing to discrimate the local and long-distance sources of PAHs associated to atmospheric PM2.5. Environ Sci Pollut Res 19(8):3142–3151

    Article  CAS  Google Scholar 

  • Masiol M, Hofer A, Squizzato S, Piazza R, Rampazzo G, Pavoni B (2012b) Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: a source apportionment. Atmos Environ 60:375–382

    Article  CAS  Google Scholar 

  • Masiol M, Squizzato S, Ceccato D, Rampazzo G, Pavoni B (2012c) A chemometric approach to determine local and regional sources of PM10 and its geochemical composition in a coastal area. Atmos Environ 54:127–133

    Article  CAS  Google Scholar 

  • Masiol M, Squizzato S, Rampazzo G, Pavoni B (2014b) Source apportionment of PM2.5 at multiple sites in Venice (Italy): spatial variability and the role of weather. Atmos Environ 98:78–88

    Article  CAS  Google Scholar 

  • Masiol M, Formenton G, Giraldo G, Pasqualetto A, Tieppo P, Pavoni B (2014a) The dark side of the tradition: the polluting effect of epiphany folk fires in the eastern Po Valley (Italy). Sci Total Environ 473-474:549–564

    Article  CAS  Google Scholar 

  • Masiol M, Benetello F, Harrison RM, Formenton G, De Gaspari F, Pavoni B (2015) Spatial, seasonal trends and transboundary transport of PM2.5inorganic ions in the Veneto region (Northearstern Italy). Atmos Environ 117:19–31

    Article  CAS  Google Scholar 

  • Mkoma SL, Kawamura K, Fu PQ (2013) Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos Chem Phys 13:10325–10338

    Article  Google Scholar 

  • Mullaugh KM, Byrd JN, Brooks Avery Jr G, Mead RN, Willey JD, Kieber RJ (2014) Characterization of carbohydrates in rainwater from the southeastern North Carolina. Chemosphere 107:51–57

    Article  CAS  Google Scholar 

  • Ofosu FG, Hopke PK, Aboh IJ, Bamford SA (2013) Biomass burning contribution to ambient air particulate levels at Navrongo in the savannah zone of Ghana. J Air Waste Manage Assoc 63(9):1036–1045

    Article  CAS  Google Scholar 

  • Oliveira C, Pio C, Alves C, Evtyungina M, Santos P, Gonçalves V, Nunes T, Silvestre AJD, Palmgren F, Wåhlin P, Harrad S (2007) Seasonal distribution of polar organic compounds in the urban atmosphere of two large cities from the north and south of Europe. Atmos Environ 41:5555–5570

    Article  CAS  Google Scholar 

  • Pastorello C, Caserini S, Galante S, Dilara P, Galletti F (2011) Importance of activity data for improving the residential wood combustion emission inventory at regional level. Atmos Environ 45(17):2869–2876

    Article  CAS  Google Scholar 

  • Perrone MG, Larsen BR, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5concentrations in Milan, northern Italy: molecular marker data and CMB modelling. Sci Total Environ 414:343–355

    Article  CAS  Google Scholar 

  • Piazzalunga A, Fermo P, Bernardoni V, Vecchi R, Valli G, De Gregorio MA (2010) A simplified method for levoglucosan quantification in wintertime atmospheric particulate matter by high performance anion-exchange chromatography coupled with pulsed amperometric detection. Int J Environ Anal Chem 90(12):934–947

    Article  CAS  Google Scholar 

  • Piazzalunga A, Belis C, Bernardoni V, Cazzuli O, Fermo P, Valli G, Vecchi R (2011) Estimates of wood burning contribution to PM by the macro-tracer method using tailored emission factors. Atmos Environ 45:6642–6649

    Article  CAS  Google Scholar 

  • Piazzalunga A, Anzano M, Collina E, Lasagni M, Lollobrigida F, Pannocchia A, Fermo P, Pitea D (2013a) Contribution of wood combustion to PAH and PCDD/F concentrations in two urban sites in northern Italy. J Aerosol Sci 56:30–40

    Article  CAS  Google Scholar 

  • Piazzalunga A, Bernardoni V, Fermo P, Vecchi R (2013b) Optimisation of analytical procedures for the quantification of ionic and carbonaceous fractions in the atmospheric aerosol and applications to the ambient samples. Anal Bioanal Chem 405(2–3):1123–1132

    Article  CAS  Google Scholar 

  • Pietrogrande MC, Bacco D, Ferrari S, Ricciardelli I, Scotto F, Trentini A, Visentin M (2016) Characteristics and major sources of carbonaceous aerosols in PM2.5 in Emilia Romagna region (northern Italy) from four-year observations. Sci Total Environ 553:172–183

    Article  CAS  Google Scholar 

  • Pignatelli T, D’Elia I, Vialetto G, Bencardino M, Contaldi M (2008) The use of biomass: synergies and trade-offs between climate change and air pollution, Italy. 17th annual international emission inventory conference. US Environmental Protection Agency, Portland, OR

    Google Scholar 

  • Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sanchez-Ochoa A, Gelencsér A (2008) Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos Environ 42:7530–7543

    Article  CAS  Google Scholar 

  • Pipalatkar P, Khapardel VV, Gajghate DG, Bawase MA (2014) Source apportionment of PM2.5 using a CMB model for a centrally located Indian City. Aerosol Air Qual Res 14:1089–1099

    CAS  Google Scholar 

  • Putaud J-P, van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson HC, Harrison RM, Herrmann H, Hitzenberger R, Hüglin C, Jones AM, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch TAJ, Loschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology-3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320

    Article  CAS  Google Scholar 

  • Puxbaum H, Caseiro A, Sánchez-Ochoa A, Kasper-Giebl A, Claeys M, Gelencsér A, Legrand M, Preunkert S, Pio C (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J Geophys Res 112:D23S05. doi:10.1029/2006JD008114

    Article  Google Scholar 

  • Ram K, Sarin MM (2010) Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of indo-Gangetic plain: implications to secondary aerosol formation. Atmos Environ 45:460–468

    Article  Google Scholar 

  • Reche C, Viana M, Amato F, Alastuey A, Moreno T, Hillamo R, Teinilä K, Saarnio K, Seco R, Peñuelas J, Mohr C, Prévôt ASH, Querol X (2012) Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Sci Total Environ 427-428:175–190

    Article  CAS  Google Scholar 

  • Rolph GD (2015) Real-time environmental applications and display system (READY). NOAA Air Resources Laboratory, College Park, MD. Website (http://www.ready.noaa.gov)

  • Satsangi A, Pachauri T, Singla V, Lakhani A, Kumari KM (2012) Organic and elemental carbon aerosols at a suburban site. Atmos Res 113:13–21

    Article  CAS  Google Scholar 

  • Saud T, Saxena M, Singh DP, Saraswati DM, Sharma SK, Datta A, Gadi R, Mandal TK (2013) Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the indo-Gangetic plain (IGP), India. Atmos Environ 71:158–169

    Article  CAS  Google Scholar 

  • Sudheer AK, Sarin MM (2008) Carbonaceous aerosols in MABL of bay of Bengal: influence of continental outflow. Atmos Environ 42:4089–4100

    Article  CAS  Google Scholar 

  • Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182

    Article  CAS  Google Scholar 

  • Squizzato S, Masiol M, Innocente E, Pecorari E, Rampazzo G, Pavoni B (2012) A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol. J Aerosol Sci 46:64–76

    Article  CAS  Google Scholar 

  • Squizzato S, Masiol M, Visin F, Canal A, Rampazzo G, Pavoni B (2014) The PM2.5 chemical composition in an industrial zone included in a large urban settlement: main sources and local background. Environ Sci Process Impacts 16:1913–1922

    Article  CAS  Google Scholar 

  • Squizzato S, Masiol M (2015) Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: a case study in Venice (Italy). Atmos Environ 119:69–81

    Article  CAS  Google Scholar 

  • Szidat S, Jenk TM, Synal H-A, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res 111:D07206. doi:10.1029/2005JD006590

    Article  Google Scholar 

  • Szidat S, Ruff M, Perron N, Wacker L, Synal HA, Hallquist M, Shannigrahi AS, Yttri KE, Dye C, Simpson D (2009) Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden. Atmos Chem Phys 9:1521–1535

    Article  CAS  Google Scholar 

  • Tositti L, Brattich E, Masiol M, Baldacci D, Ceccato D, Parmeggiani S, Stracquadanio M, Zappoli S (2014) Source apportionment of particulate matter in a large city of southeastern Po Valley (bologna, Italy). Environ Sci Pollut Res 21(2):872–890

    Article  CAS  Google Scholar 

  • Traversi D, Degan R, De Marco R, Gilli G, Pignata C, Ponzio M, Rava M, Sessarego F, Villani S, Bono R (2008) Mutagenic properties of PM2.5 air pollution in the Padana plain (Italy) before and in the course of XX winter Olympic games of “Torino 2006”. Environ Int 34:966–970

    Article  CAS  Google Scholar 

  • Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29(23):3527–3544

    Article  CAS  Google Scholar 

  • Urban RC, Lima-Souza M, Caetano-Silva L, Queiroz MEC, Nogueira RFP, Allen AG, Cardoso AA, Held G, Campos MLAM (2012) Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmos Environ 61:562–569

    Article  CAS  Google Scholar 

  • Uria-Tellaetxe I, Carslaw DC (2014) Conditional bivariate probability function for source identification. Environ Model Softw 59:1–9

    Article  Google Scholar 

  • US EPA (2003) DIESEL PARTICULATE MATTER 5040 (as Elemental Carbon). NIOSH Manual of Analytical Methods (NMAM), 4th edn

  • van Drooge BL, Perez Ballesta P (2009) Seasonal and daily source apportionment of polycyclic aromatic hydrocarbon concentrations in PM10 in a semirural European area. Environ Sci Technol 43:7310–7316

    Article  Google Scholar 

  • Vassura I, Venturini E, Marchetti S, Piazzalunga A, Bernardi E, Fermo P, Passarini F (2014) Markers and influence of open biomass burning on atmospheric particulate size and composition during a major bonfire event. Atmos Environ 82:218–225

    Article  CAS  Google Scholar 

  • Vecchi R, Chiari M, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Silvani F, Valli G (2008) A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmos Environ 42:2240–2253

    Article  CAS  Google Scholar 

  • Vecchi R, Valli G, Fermo P, D’Alessandro A, Piazzalunga A, Bernardoni V (2009) Organic and inorganic sampling artefacts assessment. Atmos Environ 43(10):1713–1720

    Article  CAS  Google Scholar 

  • Viana M, Maenhaut W, ten Brink HM, Chi X, Weijer E, Querol X, Alastuey A, Mikuška P, Večeřa Z (2007) Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmos Environ 41:5972–5983

    Article  CAS  Google Scholar 

  • Vicente A, Alves C, Calvo AI, Fernandes AP, Nunes T, Monteiro C, Almeida SM, Pio C (2013) Emission factors and detailed chemical composition of smoke particles from the 2010 wildfire season. Atmos Environ 71:295–303

    Article  CAS  Google Scholar 

  • Wang Q, Shao M, Liu Y, William K, Paul G, Li X, Liu Y, Lu S (2007) Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmos Environ 41:8380–8390

    Article  CAS  Google Scholar 

  • Xu L, Chen X, Chen J, Zhang F, He C, Zhao J, Yin L (2012) Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmos Res 104-105:264–272

    Article  CAS  Google Scholar 

  • Yamasoe MA, Artaxo P, Miguel AH, Allen AG (2000) Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmos Environ 34:1641–1653

    Article  CAS  Google Scholar 

  • Yttri KE, Dye C, Braathen O-A, Simpson D, Steinnes E (2009) Carbonaceous aerosols in Norwegian urban areas. Atmos Chem Phys 9:2007–2020

    Article  CAS  Google Scholar 

  • Yttri KE, Dye C, Slørdal LH, Braathen O-A (2005) Quantification of monosaccharide anhydride by liquid chromatography combined with mass spectrometry: application to aerosol samples from an urban and a suburban site influenced by small-scale wood burning. J Air Waste Manage Assoc 55:1169–1177

    Article  CAS  Google Scholar 

  • Zdráhal Z, Oliveira J, Vermeylen R, Claeys M, Maenhaut W (2002) Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environ Sci Technol 36:747–753

    Article  Google Scholar 

  • Zhang T, Claeys M, Cachier H, Dong S, Wang W, Maenhaut W, Liu X (2008) Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmos Environ 42:7013–7021

    Article  CAS  Google Scholar 

  • Zhang X, Liu Z, Hecobian A, Zheng M, Frank NH, Edgerton ES, Weber RJ (2012) Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: implications for secondary organic aerosol formation. Atmos Chem Phys 12:6593–6607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study presents a part of the results obtained in the framework of the project “Study of secondary particulate matter in the Venice area,” financially supported by Ente Zona Industriale di Porto Marghera (http://www.entezona.it/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Pavoni.

Ethics declarations

Disclaimer

We would like to stress that the views expressed in this study are exclusively of the authors and do not necessarily correspond to those of ARPAV.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benetello, F., Squizzato, S., Hofer, A. et al. Estimation of local and external contributions of biomass burning to PM2.5 in an industrial zone included in a large urban settlement. Environ Sci Pollut Res 24, 2100–2115 (2017). https://doi.org/10.1007/s11356-016-7987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7987-0

Keywords

Navigation