Skip to main content
Log in

Where did Roman masons get their material from? A preliminary DRIFTS/PCA investigation on mortar aggregates from X Regio buildings in the Veneto area (NE Italy) and their potential sources

  • Straightforward approach in Cultural Heritage and Environment studies - Multivariate Analysis and Chemometry
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this work, preliminary results are presented of an ongoing investigation aiming to identify the possible material sources employed by ancient Romans in their building activity in the X Regio, the European region corresponding to present north-eastern Italy and Istria (Croatia and Slovenia). The 63–420 μm fraction of the aggregate component recovered from eleven mortar fragments of buildings located in the Veneto area (in or close to Lio Piccolo, Vicenza, and Padua) is studied by diffuse reflection infrared Fourier transform spectroscopy and compared through principal component analysis to samples collected from local potential sources of raw materials. In this regard, the investigated samples from Lio Piccolo present a distinctive complexity, being this site located within the Venice lagoon, an area that has since been undergoing dramatic changes both due to natural and anthropic causes. The Vicenza and Padua sites were considered for comparison sake because they are or were located close to two rivers, the Bacchiglione and the Brenta, that in ancient times flowed into the Venice lagoon. As expected, from the exploratory investigation reported here, no firm conclusions can be obtained for the mortar samples collected in Lio Piccolo, whereas the likely provenance of the aggregate component of the samples from Vicenza and Padova from the Bacchiglione and the Brenta riverbeds, respectively, is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bearat H (1996) Chemical and mineralogical analyses of Gallo-Roman wall painting from Dietikon, Switzerland. Archaeometry 38:81–95

    Article  CAS  Google Scholar 

  • Bonazzi A, Santoro S, Mastrobattista E (2007) Caratterizzazione archeometrica delle malte e degli intonaci. In: Santoro S (ed) Pompei. Insula del Centenario (IX, 8) I. Indagini diagnostiche geofisiche e analisi archeometriche. Ante Quem, Bologna, pp 93–128 (in Italian)

    Google Scholar 

  • Bondesan A, Furlanetto P (2012) Artificial fluvial diversions in the mainland of the lagoon of Venice during the 16th and 17th centuries inferred by historical cartography analysis. Géomorphologie 18(2):175–200

    Article  Google Scholar 

  • Campos-M M, Campos-C R (2017) Applications of quartering method in soils and foods. Int J Eng Res Appl 7:35–39

    Google Scholar 

  • Castiglioni GB (1987) Le tracce degli antichi percorsi del Brenta per Montà e Arcella nei pressi di Padova: studio geomorfologico. Memorie di Scienze Geologiche XXXIX:129–149 (in Italian)

  • Colombi M (2016). Analisi spettroscopica e chemiometrica di intonaci e sabbie provenienti da Domus romane della X Regio tra Livenza e Tagliamento. MS thesis, Università Ca’ Foscari Venezia, Italy (in Italian)

  • Consorzio Venezia Nuova, MOSE homepage. In https://www.mosevenezia.eu/?lang=en [accessed Apr 2018]

  • D’Alpaos L (2010) Fatti e misfatti di idraulica lagunare, la laguna di Venezia dalla diversione dei fiumi alle nuove opere alle bocche di porto. Istituto Veneto di Scienze, Lettere ed Arti, Venezia (in Italian)

  • De Lorenzi Pezzolo A, Mazzocchin GA (2013) Spectroscopic-chemometric study of sands in mortars of Xth-Regio Roman domus. A comparison with nearby rivers sediments Sciences at Ca’ Foscari, 1: 24–38

  • De Lorenzi Pezzolo A, Valotto G, Quaranta A (2017) Carbonates and silicates abundance indexing in coarse-grained river sediments by DRIFTS and IBIL spectroscopies. Appl Spectrosc 71:1222–1230

    Article  Google Scholar 

  • De Lorenzi Pezzolo A, Colombi M, Mazzocchin GA (0000) A spectroscopic and chemometric comparison to local fluvial sands of the aggregate component of mortars from ancient Roman buildings located in the X Regio between the Livenza and Tagliamento rivers. Submitted to Appl Spectrosc

  • De Lorenzi Pezzolo A, Mazzocchin GA (in progress) Spectroscopic-chemometric study of sands in mortars from ancient Roman domus in Verona, Vicenza, Padova and Montegrotto and comparison with local raw material sources

  • Edwards HGM, Farwell DW (2008) The conservational heritage of wall paintings and buildings: an FT-Raman spectroscopic study of prehistoric, Roman, mediaeval and Renaissance lime substrates and mortars. J Raman Spectrosc 39:985–992

    Article  CAS  Google Scholar 

  • Fontana A (2008) Introduzione alla geologia della provincia di Venezia. In: Bondesan A, Primon S, Bassan V, Vitturi A (eds) Le unità geologiche della provincia di Venezia. Cierre, Verona, pp 16–32 (in Italian)

    Google Scholar 

  • Fuller MP, Griffiths PR (1978) Diffuse reflectance measurements by infrared Fourier transform spectroscopy. Anal Chem 50:1906–1910

    Article  CAS  Google Scholar 

  • Gazzi P, Zuffa GG, Gandolfi G, Paganelli L (1973) Provenienza e dispersione litoranea delle sabbie delle spiagge adriatiche fra le foci dell’Isonzo e del Foglia: inquadramento regionale. Mem Soc Geol Ital 12:1–37 (in Italian)

    Google Scholar 

  • Genestar C, Pons C, Mas A (2006) Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Anal Chim Acta 557:373–379

    Article  CAS  Google Scholar 

  • Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37:892–899

    Article  CAS  Google Scholar 

  • Hindy KT, Baghdady AR (1998) A study of airborne minerals and associated organic species in Al Ain, United Arab Emirates. Environ Manag Health 9(4):160–164

    Article  Google Scholar 

  • Hlavay J, Jonas K, Elek S, Inczedy J (1978) Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods—II. Investigation on quartz and feldspar. Clay Clay Miner 26(2):139–143

    Article  CAS  Google Scholar 

  • Jobstraibizer P, Malesani P (1973) I Sedimenti dei Fiumi Veneti. Mem Soc Geol Ital 12:411–452 (in Italian)

    Google Scholar 

  • Kramar S, Zalar V, Urosevic M, Körner W, Mauko A, Mirtič B, Lux J, Mladenović A (2011) Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mošnje (Slovenia). Mater Charact 62:1042–1057

    Article  CAS  Google Scholar 

  • Lavine BK (2000) Clustering and classification of analytical data. In: Meyers RA (ed) Encyclopedia of analytical chemistry: instrumentation and applications. John Wiley & Sons, Chichester, pp 9689–9710

    Google Scholar 

  • Mazzocchin GA, Agnoli F, Mazzocchin S, Colpo I (2003) Analysis of pigments from Roman wall paintings found in Vicenza. Talanta 61:565–572

    Article  CAS  Google Scholar 

  • Mazzocchin GA, Mazzocchin S, Rudello D (2011) Analisi dei pigmenti e degli strati preparatori di pitture parietali romane provenienti da Padova. XXXIII, Archeologia Veneta, pp 176–191 (in Italian)

    Google Scholar 

  • Mikutta R, Kleber M, Kaiser K, Jahn R (2005) Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate Soil Sci Soc Am J: 69, 120–135

    Article  CAS  Google Scholar 

  • Miller FA (2004) Infrared spectra of inorganic materials. In: Mayo DW, Miller FA, Hannah RW (ed.s), Course notes on the interpretation of infrared and Raman spectra. John Wiley & Sons, Hoboken, pp. 297–354

    Chapter  Google Scholar 

  • Miriello D, Barca D, Bloise A, Ciarallo A, Crisci GM, De Rose T, Gattuso C, Gazineo F, La Russa MF (2010) Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. J Archaeol Sci 37:2207–2223

    Article  Google Scholar 

  • Miriello D, Bloise A, Crisci GM, Apollaro C, La Marca A (2011) Characterisation of archaeological mortars and plasters from Kyme (Turkey). J Archaeol Sci 38:794–804

    Article  Google Scholar 

  • Modolo M. (2008) Analisi di frammenti dipinti di epoca romana di una casa scoperta a Lio Piccolo, MS Thesis, Università Ca’ Foscari Venezia, Italy (in Italian)

  • Moenke HH (1974) Silica, the three-dimensional silicates, borosilicates and beryllium silicates. In: Farmer VC (ed), The infrared spectra of minerals. Mineralogical Society, London, pp. 365–382

  • Moropoulou A, Polikreti K, Bakolas A, Michailidis P (2003) Correlation of physicochemical and mechanical properties of historical mortars and classification by multivariate statistics. Cem Concr Res 33:891–898

    Article  CAS  Google Scholar 

  • Nash DJ, Hopkinson L (2004) A reconaissance laser Raman and Fourier transform infrared survey of silcretes from the Kalahari Desert, Botswana. Earth Surf Processes and Landforms 29(12):1541–1558

    Article  CAS  Google Scholar 

  • Pavia A, Caro S (2008) An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Constr Build Mater 22:1807–1811

    Article  Google Scholar 

  • Rampazzi L, Pozzi A, Sansonetti A, Toniolo L, Giussani B (2006) A chemometric approach to the characterisation of historical mortars. Cement Concr Research 36:1108–1114

    Article  CAS  Google Scholar 

  • Riccardi MP, Duminuco P, Tomasi C, P. Ferloni P (1998) Thermal, microscopic and X-ray diffraction studies on some ancient mortars. Thermochim. Acta 321: 207–214

    Article  CAS  Google Scholar 

  • Saikia BJ, Parthasarathy G, Sarmah NC (2008) Fourier transform infrared spectroscopic estimation of cristallinity in SiO2 based rocks. Bull Mater Sci 31(5):775–779

    Article  CAS  Google Scholar 

  • Schiavon N, Mazzocchin GA (2009) The provenance of sand in mortars from Roman Villas in NE Italy: a chemical-mineralogical approach. The Open Mineralogy Journal 3: 32–39

  • Shiens J (2014) A tutorial on principal component analysis. Cornell University Library arXiv:1404.1100 [cs.LG]. In: https://arxiv.org/abs/1404.1100 [accessed Apr 2018]

  • Velosa AL, Coroado J, Veiga MR, Rocha F (2007) Characterisation of roman mortars from Conímbriga with respect to their repair. Mater Charact 58:1208–1216

    Article  CAS  Google Scholar 

  • Vitruvius, De Architectura, Book II. In: http://penelope.uchicago.edu/Thayer/L/Roman/Texts/Vitruvius/2*.html [accessed Apr 2018]

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London, pp. 227–284

Download references

Funding

This work has been supported by University Ca’ Foscari Venezia (ADiR funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra De Lorenzi Pezzolo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Michel Sablier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Lorenzi Pezzolo, A., Colombi, M. & Mazzocchin, G.A. Where did Roman masons get their material from? A preliminary DRIFTS/PCA investigation on mortar aggregates from X Regio buildings in the Veneto area (NE Italy) and their potential sources. Environ Sci Pollut Res 25, 28798–28807 (2018). https://doi.org/10.1007/s11356-018-2202-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2202-0

Keywords

Navigation