Skip to main content

Advertisement

Log in

A perspective for reducing environmental impacts of mussel culture in Algeria

  • OCEAN RESOURCES & MARINE CONSERVATION
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

In Algeria, the Ministry of Fisheries and Halieutic Resources has designed a strategic plan for the development of marine aquaculture for the years 2015–2025, which aims at expanding the annual production of Mediterranean mussel from less than 150 metric tonnes year−1 in 2013 to 7600 metric tonnes year−1 in 2025. We used Life Cycle Assessment (LCA) for evaluating the environmental impact of suspended mussel culture in Algeria and suggest management practices which could reduce it.

Methods

In order to estimate the current and perspective impact of this industry, we (1) applied LCA to one of the few farms currently operating in Algeria and (2) investigated two management scenarios for the farms to be established in the future in the same coastal area. The first scenario (Comp_S) represents the continuity with the current situation, in which each farm is competing with the other ones and is therefore managing the production cycle independently. In the second scenario (Coop_S), mussel farms are grouped in an aquaculture management area and shared the same facilities for post-processing harvested mussels before sending them to the market. The midpoint-based CML-IA method baseline 2000 V 3.01 was employed using SimaPro software. Furthermore, we carried out a Monte Carlo simulation, in order to assess the uncertainty in the results.

Results and discussion

The analysis focused on impact categories related to acidification and global warming potential. We took into account the energy consumptions (electricity and vessel fuel), the rearing infrastructure, including longlines, and a building for stabling, grading, and packing the mussel. Electricity contributes with 38.1 and 31.8 % respectively to global warming potential (GWP) and acidification, while fuel consumption contributes with 19.5 % to GWP and 31.8 % to acidification. Results of this work are compared with other LCA studies recently carried out in France (Aubin and Fontaine 2014) and in Spain (Iribarren et al. 2010c).

Conclusions

The LCA results show that important reductions in environmental impacts could be attained if the mussel farming activity would be operated according to the cooperative scenario here proposed. In this case, the environmental benefits will be a reduction of 3150 MJ and 156 kg CO2 eq per metric tonne of mussel produced, compared with the alternative scenario. The results of this study suggest that LCA should be applied to the seafood production sector in Algeria, in order to identify best management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbi A, Yassaa N, Boudjema R, Aliouat B (2016) A new method for cost of renewable energy production in Algeria: integrate all benefits drawn from fossil fuel savings. Renew Sust Energ Rev 56:1150–1157

    Article  Google Scholar 

  • Aubin J (2013) Life cycle assessment as applied to environmental choices regarding farmed or wild-caught fish. CAB Rev 8:11. doi:10.1079/PAVSNNR20138011

    Article  Google Scholar 

  • Aubin J, Fontaine C, (2014) Environmental impacts of producing bouchot mussels in Mont-Saint-Michel Bay (France) using LCA with emphasis on potential climate change and eutrophication. 9th International Conference LCA of Food. San Francisco, USA

  • Aubin J, Papatryphon E, Van Der Werf HMG, Chatzifotis S (2009) Assessment of the environmental impact of carnivorous finfish production systems using life cycle assessment. J Clean Prod 17:354–361

    Article  CAS  Google Scholar 

  • Avadí A, Fréon P (2013) Life cycle assessment of fisheries: a review for fisheries scientists and managers. Fish Res 143:21–38

    Article  Google Scholar 

  • Avadí A, Fréon P (2015) A set of sustainability performance indicators for seafood: direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture. Ecol Indic 48:518–532

    Article  Google Scholar 

  • Ayer NW, Tyedmers PH, Pelletier NL, Sonesson U, Scholz A (2007) Co-product allocation in life cycle assessments of seafood production systems: review of problems and strategies. Int J Life Cycle Assess 12(7):480–487

    Article  CAS  Google Scholar 

  • Bélaid F, Abderrahmani F (2013) Electricity consumption and economic growth in Algeria: a multivariate causality analysis in the presence of structural change. Energ Policy 55:286–295

    Article  Google Scholar 

  • Brigolin D, Davydov A, Pastres R, Petrenko I (2008) Optimization of shellfish production carrying capacity at a farm scale. Appl Math Comput 204:532–540

    Google Scholar 

  • Brigolin D, Dal Maschio G, Rampazzo F, Giani M, Pastres R (2009) An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel (M. galloprovincialis) farm. Estuar Coast Shelf S 82:365–376

    Article  CAS  Google Scholar 

  • Cao L, Diana JS, Keoleian GA, Lai Q (2011) Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales. Environ Sci Technol 45:6531–6538

    Article  CAS  Google Scholar 

  • Cao L, Diana JS, Keoleian GA (2013) Role of life cycle assessment in sustainable aquaculture. Rev Aquac 4:1–11

    Google Scholar 

  • Ewoukem TE, Aubin J, Mikolasek O, Corson MS, Tomedi Eyango M, Tchoumboue J, van der Werf HMG, Ombredane D (2012) Environmental impacts of farms integrating aquaculture and agriculture in Cameroon. J Clean Prod 28:208–214

    Article  Google Scholar 

  • FAO (2011) Code of conduct for responsible fisheries. FAO, Rome 91 pp

    Google Scholar 

  • FAO (2014) The state of world fisheries and aquaculture 2014. FAO, Rome 223 pp

    Google Scholar 

  • FAO/World Bank (2015) Aquaculture zoning, site selection and area management under the ecosystem approach to aquaculture. Policy Brief, 4 p

  • Ferreira JG, Hawkins AJS, Bricker SB (2007) Management of productivity, environmental effects and profitability of shellfish aquaculture—the farm aquaculture resource management (FARM) model. Aquaculture 264:160–174

    Article  Google Scholar 

  • Filgueira R, Byron CJ, Comeau LA, Costa-Pierce B, Cranford PJ, Ferreira JG, Grant J, Guyondet T, Jansen HM, Landry T, McKindsey CW, Petersen JK, Reid GK, Robinson SMC, Smaal A, Sonier R, Strand Ø, Strohmeier T (2015) An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system. Mar Ecol-Prog Ser 518:281–287

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus H, Doka G, Dones R, Hirschier R, Hellweg S, Humbert S, Margni M, Nemecek T, Spielmann M (2003) Implementation of life cycle impact assessment methods. Ecoinvent Report 3, Duebendorf, Switzerland: Swiss Centre for LCI

  • Fullana-i-Palmer P, Puig R, Bala A, Baquero G, Riba J, Raugei M (2011) From life cycle assessment to life cycle management. A case study on industrial waste management policy making. J Ind Ecol 15:458–475

    Article  Google Scholar 

  • Garrido-Maestu A, Lozano-Leon A, Rodríguez-Souto RR, Vieites-Maneiro R, María-Jose Chapela M-J, Cabado AG (2016) Presence of pathogenic Vibrio species in fresh mussels harvested in the southern Rias of Galicia (NW Spain). Food Control 59:759–765

    Article  Google Scholar 

  • GFCM (2013) Resolution GFCM/36/2012/1 on guidelines on allocated zones for aquaculture (AZA). Committee on Aquaculture (CAQ), Eighth Session, Paris, France

  • Guermoud N, Ouadjnia F, Abdelmalek F, Taleb F, Addou A (2009) Municipal solid waste in Mostaganem city (Western Algeria). Waste Manag 29:896–902

    Article  CAS  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment. An operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht 692 pp

    Google Scholar 

  • Heijungs R, Lenzen M (2014) Error propagation methods for LCA—a comparison. Int J Life Cycle Assess 19:1445–1461

    Article  Google Scholar 

  • Henriksson PJG, Guinée JB, Kleijn R, Snoo GR (2012) Life cycle assessment of aquaculture systems—a review of methodologies. Int J Life Cycle Assess 17:304–313

    Article  Google Scholar 

  • Henriksson PJG, Heijungs R, Dao HM, Phan LT, de Snoo GR, Guinée JB (2015) Product carbon footprints and their uncertainties in comparative decision contexts. PLoS One 10(3):e0121221. doi:10.1371/journal.pone.0121221

    Article  Google Scholar 

  • Himri Y, Malik AS, Arif S, Stambouli AB, Himri S, Draoui B (2009) Review and use of the Algerian renewable energy for sustainable development. Renew Sust Energ Rev 13:1584–1159

    Article  Google Scholar 

  • Iribarren D (2010) Life cycle assessment of mussel and turbot aquaculture—application and insights. University of Santiago de Compostela

  • Iribarren D, Moreira MT, Feijoo G (2010a) Life cycle assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain). Resour Conserv Recy 55:106–117

    Article  Google Scholar 

  • Iribarren D, Moreira MT, Feijoo G (2010b) Implementing by product management into the life cycle assessment of the mussel sector. Resour Conserv Recy 54:1219–1230

    Article  Google Scholar 

  • Iribarren D, Moreira MT, Feijoo G (2010c) Revisiting the life cycle assessment of mussels from a sectorial perspective. J Clean Prod 18:101–111

    Article  Google Scholar 

  • ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework. EN ISO 14040

  • Jerbi MA, Aubin J, Garnaouic K, Achoura L, Kacem A (2012) Life cycle assessment (LCA) of two rearing techniques of sea bass (Dicentrarchus labrax). Aquac Eng 46:1–9

    Article  Google Scholar 

  • Lin J, Li C, Zhang S (2016) Hydrodynamic effect of a large offshore mussel suspended aquaculture farm. Aquaculture 451:147–155

    Article  Google Scholar 

  • Lindahl O, Hart R, Hernroth B, Kollberg S, Loo L-O, Olrog L, Rehnstam-Holm A-S, Svensson J, Svensson S, Syversen U (2005) Improving marine water quality by mussel farming: a profitable solution for Swedish society. Ambio 34:131–138

    Article  Google Scholar 

  • Lloyd SM, Ries R (2007) Characterizing, propagating, and analyzing uncertainty in life-cycle assessment: a survey of quantitative approaches. J Ind Ecol 11:161–179

    Article  Google Scholar 

  • Lozano S, Iribarren D, Moreira MT, Feijoo G (2009) The link between operational efficiency and environmental impacts a joint application of life cycle assessment and data envelopment analysis. Sci Total Environ 407:1744–1754

    Article  CAS  Google Scholar 

  • Lozano S, Iribarren D, Moreira MT, Feijoo G (2010) Environmental impact efficiency in mussel cultivation. Resour Conserv Recy 54:1269–1277

    Article  Google Scholar 

  • MAP (1997) Arrêté du 29 juillet 1997 fixant les règles sanitaires régissant la production et la mise sur le marché de mollusques bivalves vivants

  • Ministry of Energy (2016) National energy balance 2015. Algerian Ministry of Energy Edition 2016, Algiers. http://www.energy.gov.dz/francais/uploads/2016/Bilans_et_statistiques_du_secteur/Bilan_Energetique_National/Bilan_Energitique_National_2015_last.pdf. Accessed 20 December 2016

  • MPRH (2008) Schéma Directeur de développement des activités de la pêche et de l’aquaculture, Horizon 2025. Ministère de la Pêche et des Ressources Halieutiques, Alger 151 p

    Google Scholar 

  • Parker R (2012) Review of life cycle assessment research on products derived from fisheries and aquaculture: a report for seafish as part of the collective action to address greenhouse gas emissions in seafood. Sea Fish Industry Authority, 22 pp

  • Pelletier N, Tyedmers P (2007) Feeding farmed salmon: is organic better? Aquaculture 272:399–416

    Article  Google Scholar 

  • Pelletier NL, Ayer NW, Tyedmers PH, Kruse SA, Flysjo A, Robillard G, Ziegler F, Scholz AJ, Sonesson U (2007) Impact categories for life cycle assessment research of seafood production systems: review and prospectus. Int J Life Cycle Assess 12:414–421

    Article  Google Scholar 

  • PRé (2014) SimaPro 8. Software. Available at: http://www.pre.nl

  • Rampazzo F, Berto D, Giani M, Brigolin D, Covelli S, Cacciatore F, Boscolo R, Bellucci LG, Pastres R (2013) Impact of mussel farm biodeposition on sediment biogeochemistry in the north-west Adriatic Sea. Estuar Coast Shelf S 129:49–58

    Article  CAS  Google Scholar 

  • Rodríguez GR, Villasante S, do Carme García-Negro M (2011) Are red tides affecting economically the commercialization of the Galician (NW Spain) mussel farming? Mar Policy 35:252–257

    Article  Google Scholar 

  • Rosland R, Bacher C, Strand Ø, Aure J, Strohmeier T (2011) Modelling growth variability in longline mussel farms as a function of stocking density and farm design. J Sea Res 66:318–330

    Article  Google Scholar 

  • Samuel-Fitwi B, Wuertz S, Schroeder JP, Carsten S (2012) Sustainability assessment tools to support aquaculture development. J Clean Prod 32:183–192

    Article  Google Scholar 

  • Sanchez-Jerez P, Karakassis I, Massa F, Fezzardi D, Aguilar-Manjarrez J, Soto D, Chapela R, Avila P, Macias JC, Tomassetti P, Marino G, Borg JA, Franicevic V, Yucel-Gier G, Fleming IA, Biao X, Nhhala H, Hamza H, Forcada A, Dempster T (2016) Aquaculture’s struggle for space: the need for coastal spatial planning and the potential benefits of allocated zones for aquaculture (AZAs) to avoid conflict and promote sustainability. Int Res-Aquaculture Environment Interactions 8:41–54

    Article  Google Scholar 

  • Stambouli AB (2011) Promotion of renewable energies in Algeria: strategies and perspectives. Renew Sust Energ Rev 15:1169–1181

    Article  Google Scholar 

  • Stambouli AB, Khiat Z, Flazi S, Kitamura Y (2012) A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues. Renew Sust Energ Rev 16:4445–4460

    Article  Google Scholar 

  • Vázquez-Rowe I, Iribarren D, Moreira MT, Feijoo G (2010) Combined application of life cycle assessment and data envelopment analysis as a methodological approach for the assessment of fisheries. Int J Life Cycle Assess 15:272–283

    Article  Google Scholar 

  • Vázquez-Rowe I, Villanueva-Rey P, Moreira MT, Feijoo G (2016) Opportunities and challenges of implementing life cycle assessment in seafood certification: a case study for Spain. Int J Life Cycle Assess 21:451–464

    Article  Google Scholar 

  • Weidema BP, Wesnæs MS (1996) Data quality management for life cycle inventories—an example of using data quality indicators. J Clean Prod 4:167–174

    Article  Google Scholar 

  • Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Ass 21:1218–1230

    Article  Google Scholar 

  • Yacout DMM, Soliman NF, Yacout MM (2016) Comparative life cycle assessment (LCA) of tilapia in two production systems: semi-intensive and intensive. Int J Life Cycle Assess 21:806–819

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work has been supported by EU Project No. 282977 “Marine Ecosystem Dynamics and Indicators for North Africa” (MEDINA) and the research fund for doctoral program supported by the Algerian Ministry of High Education and Scientific Research (Grant No. 487/PNE/ENS/Italie/2015-2016). We would like to thank Boualem Khodja for providing necessary data for the mussel farming systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hichem Lourguioui.

Additional information

Responsible editor: Ian Vázquez-Rowe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourguioui, H., Brigolin, D., Boulahdid, M. et al. A perspective for reducing environmental impacts of mussel culture in Algeria. Int J Life Cycle Assess 22, 1266–1277 (2017). https://doi.org/10.1007/s11367-017-1261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-017-1261-7

Keywords

Navigation