Skip to main content
Log in

A nonmonotone truncated Newton–Krylov method exploiting negative curvature directions, for large scale unconstrained optimization

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based on the quadratic model of the objective function is used to select the most promising between the two search directions. Both the latter selection rule and the CG stopping criterion for approximately solving Newton’s equation, strongly rely on conjugacy conditions. An appropriate linesearch technique is adopted for each search direction: a nonmonotone stabilization is used with the approximate Newton step, while an Armijo type linesearch is used for the negative curvature direction. The proposed algorithm is both globally and superlinearly convergent to stationary points satisfying second order necessary conditions. We carry out a significant numerical experience in order to test our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dembo R.S., Steihaug T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dolan, E.D., More, J.J.: Benchmarking Optimization Software with Performance Profiles. Mathematics and Computer Science Division. Preprint ANL/MCS-P861-1200

  3. Fasano, G., Lucidi, S.: A nonmonotone truncated Newton–Krylov method exploiting negative curvature directions, for large scale unconstrained optimization: complete results. Technical Report INSEAN 2008-035/rt, 2008

  4. Fasano G., Roma M.: Iterative computation of negative curvature directions in large scale optimization. Comput. Optim. Appl. 38(1), 81–104 (2007)

    Article  MathSciNet  Google Scholar 

  5. Ferris M.C., Lucidi S., Roma M.: Nonmonotone curvilinear linesearch methods for unconstrained optimization. Comput. Optim. Appl. 6, 117–136 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Forsgren A.: On the Behavior of the Conjugate-Gradient Method on Ill-conditioned Problems. Technical Report TRITA-MAT-2006-OS1, Department of Mathematics, Royal Institute of Technology

  7. Goldfarb D.: Curvilinear path steplength algorithms for minimization which use directions of negative curvature. Math. Program. 18, 31–40 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gould N.I.M., Lucidi S., Roma M., Toint Ph.L.: Exploiting negative curvature directions in linesearch methods for unconstrained optimization. Optim. Methods Softw. 14, 75–98 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gould N.I.M., Orban D., Toint Ph.L.: CUTEr: Constrained and unconstrained testing environment, revised. Trans. ACM Math. Softw. 29(4), 373–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gould N.I.M., Orban D., Toint Ph.L.: GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gould N.I.M., Sainvitu C., Toint Ph.L.: A Filter-Trust-Region method for unconstrained optimization. SIAM J. Optim. 16(2), 341–357 (2006)

    Article  MathSciNet  Google Scholar 

  12. Grippo L., Lampariello F., Lucidi S.: A truncated Newton method with nonmonotone linesearch for unconstrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grippo L., Lampariello F., Lucidi S.: A class of nonmonotone stabilization methods in unconstrained optimization. Numer. Math. 59, 779–805 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lucidi S., Rochetich F., Roma M.: Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization. SIAM J. Optim. 8, 916–939 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lucidi S., Roma M.: Numerical experiences with new truncated Newton methods in large scale unconstrained optimization. Comput. Optim. Appl. 7, 71–87 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. McCormick G.P.: A modification of Armijo’s stepsize rule for negative curvature. Math. Program. 13, 111–115 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. More’ J.J., Sorensen D.C.: On the use of directions of negative curvature in a modified Newton method. Math. Program. 16, 1–20 (1979)

    Article  MathSciNet  Google Scholar 

  18. Mukai H., Polak E.: A second-order method for unconstrained optimization. J. Optim. Theory Appl. 26, 501–513 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nash S.G., Sofer A.: Assessing a search direction within a truncated Newton method. Oper. Res. Lett. 9, 219–221 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Olivares A., Moguerza J.M., Prieto F.J.: Nonconvex optimization using negative curvature within a modified linesearch. Euro. J. Oper. Res. 189, 706–722 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shultz G.A., Schnabel R.B., Byrd R.H.: A family of trust-region-based algorithms for unconstrained minimization. SIAM J. Numer. Anal. 22, 47–67 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Fasano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasano, G., Lucidi, S. A nonmonotone truncated Newton–Krylov method exploiting negative curvature directions, for large scale unconstrained optimization. Optim Lett 3, 521–535 (2009). https://doi.org/10.1007/s11590-009-0132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-009-0132-y

Keywords

Navigation