Skip to main content
Log in

Spatial quantile clustering of climate data

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

In the era of climate change, the distribution of climate variables evolves with changes not limited to the mean value. Consequently, clustering algorithms based on central tendency could produce misleading results when used to summarize spatial and/or temporal patterns. We present a novel approach to spatial clustering of time series based on quantiles using a Bayesian framework that incorporates a spatial dependence layer based on a Markov random field. A series of simulations tested the proposal, then applied to the sea surface temperature of the Mediterranean Sea, one of the first seas to be affected by the effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amovin-Assagba M, Gannaz I, Jacques J (2022) Outlier detection in multivariate functional data through a contaminated mixture model. Comput Stat Data Anal 174:107496

    Article  MathSciNet  Google Scholar 

  • Benoit DF, Van den Poel D (2017) bayesQR: a Bayesian approach to quantile regression. J Stat Softw 76:1–32

    Article  Google Scholar 

  • Bera AK, Galvao AF Jr, Montes-Rojas GV, Park SY (2016) Asymmetric Laplace regression: maximum likelihood, maximum entropy and quantile regression. J Econom Methods 5:79–101

    Article  MathSciNet  Google Scholar 

  • Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc Ser B (Methodol) 48:259–279

    MathSciNet  Google Scholar 

  • Bethoux J-P, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662

    Article  ADS  Google Scholar 

  • Bondell HD, Reich BJ, Wang H (2010) Noncrossing quantile regression curve estimation. Biometrika 97:825–838

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Bouveyron C, Jacques J (2011) Model-based clustering of time series in group-specific functional subspaces. Adv Data Anal Classif 5:281–300

    Article  MathSciNet  Google Scholar 

  • Bouveyron C, Côme E, Jacques J (2015) The discriminative functional mixture model for a comparative analysis of bike sharing systems. Ann Appl Stat 9:1726–1760

    Article  MathSciNet  Google Scholar 

  • Bouzinac C, Font J, Johannessen J (2003) Annual cycles of sea level and sea surface temperature in the western Mediterranean Sea. J Geophys Res Oceans 108(C3):3059

    Article  ADS  Google Scholar 

  • Cade BS, Noon BR (2003) A gentle introduction to quantile regression for ecologists. Front Ecol Environ 1:412–420

    Article  Google Scholar 

  • Cannon AJ (2018) Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes. Stoch Environ Res Risk Assess 32:3207–3225

    Article  Google Scholar 

  • Cucala L, Marin J-M, Robert CP, Titterington DM (2009) A Bayesian reassessment of nearest-neighbor classification. J Am Stat Assoc 104:263–273

    Article  MathSciNet  CAS  Google Scholar 

  • Cuesta-Albertos JA, Gordaliza A, Matrán C (1997) Trimmed \(k\)-means: an attempt to robustify quantizers. Ann Stat 25:553–576

    Article  MathSciNet  Google Scholar 

  • Cutroneo L, Capello M (2023) The cold waters in the port of Genoa (NW Mediterranean Sea) during the marine heatwave in summer 2022. J Mar Sci Eng 11:1568

    Article  Google Scholar 

  • de la Hoz CF, Ramos E, Puente A, Méndez F, Menéndez M, Juanes JA, Losada ÍJ (2018) Ecological typologies of large areas. an application in the Mediterranean Sea. J Environ Manage 205:59–72

    Article  PubMed  Google Scholar 

  • Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239

    Article  MathSciNet  Google Scholar 

  • Disegna M, D’Urso P, Durante F (2017) Copula-based fuzzy clustering of spatial time series. Spatial Stat 21:209–225

    Article  MathSciNet  Google Scholar 

  • D’Ortenzio F, Ribera d’Alcalà M (2008) On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosci Discuss 5:139–148

    Google Scholar 

  • Eilers PH, Gampe J, Marx BD, Rau R (2008) Modulation models for seasonal time series and incidence tables. Stat Med 27:3430–3441

    Article  MathSciNet  PubMed  Google Scholar 

  • Fritz H, Garcia-Escudero LA, Mayo-Iscar A (2013) A fast algorithm for robust constrained clustering. Comput Stat Data Anal 61:124–136

    Article  MathSciNet  Google Scholar 

  • Gaetan C, Girardi P, Pastres R (2017) Spatial clustering of curves with an application of satellite data. Spat Stat 20:110–124

    Article  MathSciNet  Google Scholar 

  • Gallegos MT (2002) Maximum likelihood clustering with outliers. In: Jajuga K, Sokołowski A, Bock H-H (eds) Classification, clustering, and data analysis. Springer, Berlin, pp 247–255

    Chapter  Google Scholar 

  • Garcia-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2015) Avoiding spurious local maximizers in mixture modeling. Stat Comput 25:619–633

    Article  MathSciNet  Google Scholar 

  • Giraldo R, Delicado P, Mateu J (2012) Hierarchical clustering of spatially correlated functional data. Stat Neerl 66:403–421

    Article  MathSciNet  Google Scholar 

  • Grün B, Leisch F (2007) Fitting finite mixtures of generalized linear regressions in r. Comput Stat Data Anal 51:5247–5252

    Article  MathSciNet  Google Scholar 

  • Hu G, Geng J, Xue Y, Sang H (2022) Bayesian spatial homogeneity pursuit of functional data: an application to the us income distribution. Bayesian Anal 1:1–27

    Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218

    Article  Google Scholar 

  • Ibrahim O, Mohamed B, Nagy H (2021) Spatial variability and trends of marine heat waves in the eastern Mediterranean Sea over 39 years. J Mar Sci Eng 9:643

    Article  Google Scholar 

  • Jiang H, Serban N (2012) Clustering random curves under spatial interdependence with application to service accessibility. Technometrics 54:108–119

    Article  MathSciNet  Google Scholar 

  • Jiang H, Serban N (2012) Clustering random curves under spatial interdependence with application to service accessibility. Technometrics 54:108–119

    Article  MathSciNet  Google Scholar 

  • Jorgensen B (1982) Statistical properties of the generalized inverse Gaussian distribution. Springer, New York

    Book  Google Scholar 

  • Katz RW (2010) Statistics of extremes in climate change. Clim Change 100:71–76

    Article  ADS  CAS  Google Scholar 

  • Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Google Scholar 

  • Kim J, Oh H-S (2020) Pseudo-quantile functional data clustering. J Multivar Anal 178:104626

    Article  MathSciNet  Google Scholar 

  • Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46:33–50

    Article  MathSciNet  Google Scholar 

  • Koenker R, Machado JA (1999) Goodness of fit and related inference processes for quantile regression. J Am Stat Assoc 94:1296–1310

    Article  MathSciNet  Google Scholar 

  • Koner S, Staicu A-M (2023) Second-generation functional data. Annu Rev Stat Appl 10:547–572

    Article  MathSciNet  Google Scholar 

  • Kotz S, Kozubowski T, Podgorski K (2001) The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Springer, New York

    Book  Google Scholar 

  • Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578

    Article  MathSciNet  Google Scholar 

  • Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evolut 25:250–260

    Article  Google Scholar 

  • Liao TW (2005) Clustering of time series data-a survey. Pattern Recognit 38:1857–1874

    Article  ADS  Google Scholar 

  • Marin J-M, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22:1167–1180

    Article  MathSciNet  Google Scholar 

  • Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain Monte Carlo without likelihoods. Proc Natl Acad Sci 100:15324–15328

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • McLachlan GJ, Peel D (2000) Finite mixture models. Wiley, New York

    Book  Google Scholar 

  • Nguyen HD, McLachlan GJ, Ullmann JF, Janke AL (2016) Spatial clustering of time series via mixture of autoregressions models and Markov random fields. Stat Neerl 70:414–439

    Article  MathSciNet  Google Scholar 

  • Nunes S, Perez GL, Latasa M, Zamanillo M, Delgado M, Ortega-Retuerta E, Marrasé C, Simó R, Estrada M (2019) Size fractionation, chemotaxonomic groups and bio-optical properties of phytoplankton along a transect from the Mediterranean Sea to the SW Atlantic Ocean. Sci Marina 83:87–109

    Article  CAS  Google Scholar 

  • Nykjaer L (2009) Mediterranean Sea surface warming 1985–2006. Clim Res 39:11–17

    Article  Google Scholar 

  • Oliver M, Webster R (1989) A geostatistical basis for spatial weighting in multivariate classification. Math Geol 21:15–35

    Article  Google Scholar 

  • Pastor F, Valiente JA, Palau JL (2019) Sea surface temperature in the Mediterranean: trends and spatial patterns (1982–2016). Meteorol Climatol Mediterranean Black Seas 175:297–309

    Article  Google Scholar 

  • Pereyra M, Dobigeon N, Batatia H, Tourneret J-Y (2013) Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm. IEEE Trans Image Process 22:2385–2397

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Portmann RW, Solomon S, Hegerl GC (2009) Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc Natl Acad Sci 106:7324–7329

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts RB (1952) Some generalized order-disorder transformations. Math Proc Cambridge Philos Soc 48:106–109

    Article  ADS  MathSciNet  Google Scholar 

  • Reich BJ (2012) Spatiotemporal quantile regression for detecting distributional changes in environmental processes. J R Stat Soc: Ser C: Appl Stat 61:535–553

    Article  MathSciNet  PubMed  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Book  Google Scholar 

  • Romary T, Ors F, Rivoirard J, Deraisme J (2015) Unsupervised classification of multivariate geostatistical data: two algorithms. Comput Geosci 85:96–103

    Article  ADS  Google Scholar 

  • Schneider SH (2001) What is ‘dangerous’ climate change? Nature 411:17–19

    Article  ADS  CAS  PubMed  Google Scholar 

  • Secchi P, Vantini S, Vitelli V (2013) Bagging Voronoi classifiers for clustering spatial functional data. Int J Appl Earth Obs Geoinf 22:53–64

    Google Scholar 

  • Shaltout M, Omstedt A (2014) Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56:411–443

    Article  Google Scholar 

  • Sottile G, Adelfio G (2019) Clusters of effects curves in quantile regression models. Comput Stat 34:551–569

    Article  MathSciNet  Google Scholar 

  • Strauss DJ (1977) Clustering on coloured lattices. J Appl Probab 14:135–143

    Article  MathSciNet  Google Scholar 

  • Sun F, Roderick ML, Farquhar GD (2018) Rainfall statistics, stationarity, and climate change. Proc Natl Acad Sci 115:2305–2310

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeskog SM, Thorarinsdottir TL, Steinsland I, Lindgren F (2022) Quantile based modeling of diurnal temperature range with the five-parameter lambda distribution. Environmetrics 33:2719

    Article  MathSciNet  Google Scholar 

  • Vandewalle V, Preda C, Dabo-Niang S (2022) Clustering spatial functional data. In: Mateu J, Giraldo R (eds) Geostatistical functional data analysis. Wiley, New York, pp 155–174

    Chapter  Google Scholar 

  • Wang X-F, Xu Y (2017) Fast clustering using adaptive density peak detection. Stat Methods Med Res 26:2800–2811

    Article  MathSciNet  PubMed  Google Scholar 

  • Watanabe S, Opper M (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11:3571–3594

    MathSciNet  Google Scholar 

  • Zhang M, Parnell A (2023) Review of clustering methods for functional data. ACM Trans Knowl Discov Data 17:1–34

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Noémie Le Carrer for retrieving the dataset.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Girardi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Code and data availability

Code and data are available upon request from the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaetan, C., Girardi, P. & Musau, V.M. Spatial quantile clustering of climate data. Adv Data Anal Classif (2024). https://doi.org/10.1007/s11634-024-00580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11634-024-00580-y

Keywords

Mathematics Subject Classification

Navigation