Skip to main content

Advertisement

Log in

Local Habitat and Seascape Structure Influence Seagrass Fish Assemblages in the Venice Lagoon: The Importance of Conservation at Multiple Spatial Scales

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Seagrass meadows are a critical component of estuarine and coastal seascapes, and their structure influences fish assemblages at multiple spatial scales. The patch mosaic model, which defines the seascape as a collection of interacting habitat types, is increasingly adopted to prioritise protected areas and design ecological restoration schemes, hence helping to preserve seagrass meadows and the associated fish assemblages. Despite that, there are few studies investigating the relative contribution of environmental characteristics measured at different spatial scales in determining the distribution of seagrass fish. This study collects fish and environmental observations taken at both site and seascape scales in seagrass meadows in the Venice lagoon (Adriatic Sea, Italy). By means of generalised linear models, it aims to disentangle the relative influence of local water quality and habitat characteristics from that of habitat mosaic properties, investigating the response of whole fish assemblage descriptors, feeding guilds and dominant species. While confirming the primary importance of local habitat quality, the study highlights that also seagrass habitat structure at the seascape scale is relevant for seagrass fish assemblages, influencing total biomass, biomass of macrobenthivorous and hyperbenthivorous/piscivorous species and seagrass specialists such as syngnathids. Conservation of seagrass fish assemblages can therefore be promoted in Mediterranean coastal lagoons by preserving or restoring some features of the habitat mosaic, namely the extension of seagrass patches and their shape complexity, in addition to local water quality and seagrass cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdul Malak D., Livingstone S.R., Pollard D., Polidoro B.A., Cuttelod A., Bariche M., Bilecenoglu M., Carpenter K.E., Collette B.B., Francour P., Goren M., Hichem Kara M., Massutí E., Papaconstantinou C., and Tunesi L. 2011. Overview of the conservation status of the marine fishes of the Mediterranean Sea. Gland, Switzerland and Malaga, Spain: IUCN. vii + 61pp.

  • Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto (ARPAV). 2012. Piano di monitoraggio dei corpi idrici della laguna di Venezia finalizzato alla definizione dello stato ecologico, ai sensi della direttiva 2000/60/CE. Relazione Finale

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Kock, A.C. Stier, and B.R. Sillman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81 (2): 169–193. https://doi.org/10.1890/10-1510.1.

    Article  Google Scholar 

  • Bell, J.D., and M. Westoby. 1986. Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. Journal of Experimental Marine Biology and Ecology 104 (1-3): 249–274.

    Article  Google Scholar 

  • Bell, S.S., M.O. Hall, S. Soffian, and K. Madley. 2002. Assessing the impact of boat propeller scars on fish and shrimp utilizing seagrass beds. Ecological Applications 12 (1): 206–217. https://doi.org/10.1890/1051-0761(2002)012[0206:ATIOBP]2.0.CO;2.

    Article  Google Scholar 

  • Bell, S.S., A. Tewfik, M.O. Hall, and M.S. Fonseca. 2008. Evaluation of seagrass planting and monitoring techniques: Implications for assessing restoration success and habitat equivalency. Restoration Ecology 16 (3): 407–416. https://doi.org/10.1111/j.1526-100X.2007.00308.x.

    Article  Google Scholar 

  • Betzabeth, P.-J.E., and L.-C.M. de los Ángeles. 2017. Spatial diversity of a coastal seascape: Characterization, analysis and application for conservation. Ocean & Coastal Management 136: 185–195. https://doi.org/10.1016/j.ocecoaman.2016.12.002.

    Article  Google Scholar 

  • Blaber, S.J.M., and T.G. Blaber. 1980. Factors affecting the distribution of juvenile estuarine and inshore fish. Journal of Fish Biology 17: 143–162.

    Article  Google Scholar 

  • Boström, C., E.L. Jackson, and C.A. Simenstad. 2006. Seagrass landscapes and their effects on associated fauna: A review. Estuarine, Coastal and Shelf Science 68 (3-4): 383–403. https://doi.org/10.1016/j.ecss.2006.01.026.

    Article  Google Scholar 

  • Boström, C., S.J. Pittman, C. Simenstad, and R.T. Kneib. 2011. Seascape ecology of coastal biogenic habitats: Advances, gaps, and challenges. Marine Ecology Progress Series 427: 191–217. https://doi.org/10.3354/meps09051.

    Article  Google Scholar 

  • Braun-Blanquet J. 1972. Plant sociology: the study of plant communities. Hafner

  • Burnham K.P., and Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.). Springer-Verlag, Berlin

  • Campbell, M.L. 2002. Getting the foundation right: A scientifically based management framework to aid in the planning and implementation of seagrass transplant efforts. Bulletin of Marine Science 71: 1405–1414.

    Google Scholar 

  • Campolmi, M., G. Sarà, A. Galioto, D. Baratta, and P. Franzoi. 1996. Indagine sulla comunità ittica riparia di una laguna costiera mediterranea, durante cicli nictemerali di campionamento. Biologia Marina Mediterranea 3: 499–500.

    Google Scholar 

  • Caniglia, G., S. Borella, D. Curiel, P. Nascimbeni, A.F. Paloschi, A. Rismondo, F. Scarton, D. Tagliapietra, and L. Zanella. 1990. Cartografia della distribuzione delle fanerogame marine nella laguna di Venezia. Giornale Botanico Italiano 124: 212.

    Google Scholar 

  • Connolly, R.M., and J.S. Hindell. 2006. Review of nekton patterns and ecological processes in seagrass landscapes. Estuarine, Coastal and Shelf Science 68: 433–444. https://doi.org/10.1016/j.ecss.2006.01.023.

    Article  Google Scholar 

  • Curiel, D., E. Checchin, C. Miotti, A. Pierini, and A. Rismondo. 2014. Praterie a fanerogame marine della laguna di Venezia - aggiornamento cartografico al 2010 e confronto storico. Lavori della Società Veneziana di Scienze Naturali 39: 55–66.

    Google Scholar 

  • Dance, M.A., and J.R. Rooker. 2015. Habitat- and bay-scale connectivity of sympatric fishes in an estuarine nursery. Estuarine, Coastal and Shelf Science 167: 447–457. https://doi.org/10.1016/j.ecss.2015.10.025.

    Article  Google Scholar 

  • Davis, B., R. Baker, and M. Sheaves. 2014. Seascape and metacommunity processes regulate fish assemblage structure in coastal wetlands. Marine Ecology Progress Series 500: 187–202. https://doi.org/10.3354/meps10680.

    Article  Google Scholar 

  • Elliott, M., and K.L. Hemingway. 2002. Fishes in Estuaries. Oxford: Blackwell Science.

    Book  Google Scholar 

  • Elliott, M., and V. Quintino. 2007. The Estuarine Quality Paradox, Environmental Homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine pollution bulletin 54 (6): 640–645. https://doi.org/10.1016/j.marpolbul.2007.02.003.

    Article  CAS  Google Scholar 

  • Engelhard, S.L., C.M. Huijbers, B. Stewart-Koster, A.D. Olds, T.A. Schlacher, and R.M. Connolly. 2016. Prioritizing seascape connectivity in conservation using network analysis. Journal of Applied Ecology 54 (4): 1130–1141. https://doi.org/10.1111/1365-2664.12824.

    Article  Google Scholar 

  • Facca C., Bonometto A., Boscolo R., Buosi A., Parravicini M., Siega A., Volpe V., and Sfriso A. 2014a. Coastal Lagoon Recovery By Seagrass Restoration. A New Strategic Approach To Meet HD & WFD Objectives. In Proceedings of the 9th European Conference on Ecological Restoration. Oulu, Finland, 3-8 August 2014

  • Facca C., Ceoldo S., Pellegrino N., and Sfriso A. 2014b. Natural recovery and planned intervention in coastal wetlands: Venice lagoon (Northern Adriatic Sea, Italy) as a case study. The Scientific World Journal 2014:15 pages. https://doi.org/10.1155/2014/968618

    Google Scholar 

  • Flynn, A.J., and D.A. Ritz. 1999. Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated prey. Journal of the Marine Biological Association of the UK 79: 487–494. https://doi.org/10.1017/S0025315498000617.

    Article  Google Scholar 

  • Ford, J.R., R.J. Williams, A.M. Fowler, D.R. Cox, and I.M. Suthers. 2010. Identifying critical estuarine seagrass habitat for settlement of coastally spawned fish. Marine Ecology Progress Series 408: 181–193. https://doi.org/10.3354/meps08582.

    Article  Google Scholar 

  • Franco, A., M. Elliott, P. Franzoi, and P. Torricelli. 2008. Life strategies of fishes in European estuaries: the functional guild approach. Marine Ecology Progress Series 354: 219–228. https://doi.org/10.3354/meps07203.

    Article  Google Scholar 

  • Franco, A., P. Franzoi, S. Malavasi, F. Riccato, and P. Torricelli. 2006a. Fish assemblages in different shallow water habitats of the Venice Lagoon. Hydrobiologia 555 (1): 159–174.

    Article  Google Scholar 

  • Franco, A., P. Franzoi, S. Malavasi, F. Riccato, P. Torricelli, and D. Mainardi. 2006b. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuarine, Coastal and Shelf Science 66 (1-2): 67–83. https://doi.org/10.1016/j.ecss.2005.07.020.

    Article  Google Scholar 

  • Franco, A., S. Malavasi, F. Pranovi, P. Franzoi, and P. Torricelli. 2012. Age and reproductive investment in grass goby females in the Venice lagoon. Environmental Biology of Fishes 93 (3): 419–425. https://doi.org/10.1007/s10641-011-9931-y.

    Article  Google Scholar 

  • Franco, A., F. Riccato, P. Torricelli, and P. Franzoi. 2009. Fish assemblage response to environmental pressures in the Venice lagoon. Transitional Waters Bulletin 3: 29–44. https://doi.org/10.1285/i1825229Xv3n1p29.

    Article  Google Scholar 

  • Franzoi, P., A. Franco, and P. Torricelli. 2010. Fish assemblage diversity and dynamics in the Venice lagoon. Rendiconti Lincei 21 (3): 269–281. https://doi.org/10.1007/s12210-010-0079-z.

    Article  Google Scholar 

  • Franzoi, P., F. Riccato, A. Franco, and P. Torricelli. 2004. Dietary differences in three pipefish species (Osteichthyes, Syngnathidae) related to snout morphology. Biologia Marina Mediterranea 11: 592–594.

    Google Scholar 

  • Franzoi, P., R. Maccagnani, R. Rossi, and V.U. Ceccherelli. 1993. Life cycles and feeding habits of Syngnathus taenionotus and S. abaster (Pisces, Syngnathidae) in a brackish bay of the Po River Delta (Adriatic Sea). Marine Ecology Progress Series 97: 71–81. https://doi.org/10.3354/meps097071.

    Article  Google Scholar 

  • Froese R., and Pauly D. 2015. FishBase. http://www.fishbase.org.

  • Gilby, B.L., I.R. Tibbetts, A.D. Olds, P.S. Maxwell, and T. Stevens. 2016. Seascape context and predators override water quality effects on inshore coral reef fish communities. Coral Reefs 35 (3): 979–990. https://doi.org/10.1007/s00338-016-1449-5.

    Article  Google Scholar 

  • Green, B.C., D.J. Smith, S.E. Earley, L.J. Hepburn, and G.J.C. Underwood. 2009. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom. Estuarine, Coastal and Shelf Science 85 (2): 247–256. https://doi.org/10.1016/j.ecss.2009.08.008.

    Article  Google Scholar 

  • Grober-Dunsmore, R., S.J. Pittman, C. Caldow, M.S. Kendall, and T.K. Frazer. 2009. A Landscape Ecology Approach for the Study of Ecological Connectivity Across Tropical Marine Seascapes. In Ecological Connectivity among Tropical Coastal Ecosystems, ed. I. Nagelkerken, 493–530 Springer Science+Business Media.

    Chapter  Google Scholar 

  • Harborne, A.R., P.J. Mumby, K. Zychaluk, J.D. Hedley, and P.G. Blackwell. 2006. Modeling the beta diversity of coral reefs. Ecology 87 (11): 2871–2881. https://doi.org/10.1890/0012-9658(2006)87[2871:MTBDOC]2.0.CO;2.

    Article  Google Scholar 

  • Horinouchi, M. 2007. Review of the effects of within-patch scale structural complexity on seagrass fishes. Journal of Experimental Marine Biology and Ecology 350 (1-2): 111–129. https://doi.org/10.1016/j.jembe.2007.06.015.

    Article  Google Scholar 

  • Horinouchi, M. 2009. Horizontal gradient in fish assemblage structures in and around a seagrass habitat: Some implications for seagrass habitat conservation. Ichthyological Research 56 (2): 109–125. https://doi.org/10.1007/s10228-008-0070-1.

    Article  Google Scholar 

  • Howard, R.K., and J.D. Koehn. 1985. Population dynamics and feeding ecology of pipefish (Syngnathidae) associated with eelgrass beds of Western Port, Victoria. Marine and Freshwater Research 36 (3): 361–370. https://doi.org/10.1071/MF9850361.

    Article  Google Scholar 

  • Irlandi, E.A., and M.K. Crawford. 1997. Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish. Oecologia 110 (2): 222–230. https://doi.org/10.1007/s004420050154.

    Article  CAS  Google Scholar 

  • Jackson, E.L., M.J. Attrill, and M.B. Jones. 2006a. Habitat characteristics and spatial arrangement affecting the diversity of fish and decapod assemblages of seagrass (Zostera marina) beds around the coast of Jersey (English Channel). Estuarine, Coastal and Shelf Science 68 (3-4): 421–432. https://doi.org/10.1016/j.ecss.2006.01.024.

    Article  Google Scholar 

  • Jackson, E.L., M.J. Attrill, A.A. Rowden, and M.B. Jones. 2006b. Seagrass complexity hierarchies: Influence on fish groups around the coast of Jersey (English Channel). Journal of Experimental Marine Biology and Ecology 330 (1): 38–54. https://doi.org/10.1016/j.jembe.2005.12.016.

    Article  Google Scholar 

  • Jelbart, J.E., P.M. Ross, and R.M. Connolly. 2006. Edge effects and patch size in seagrass landscapes: an experimental test using fish. Marine Ecology Progress Series 319: 93–102. https://doi.org/10.3354/meps319093.

    Article  Google Scholar 

  • Lotze, H.K., M. Coll, and J.A. Dunne. 2011. Historical Changes in Marine Resources, Food-web Structure and Ecosystem Functioning in the Adriatic Sea, Mediterranean. Ecosystems 14 (2): 198–222. https://doi.org/10.1007/s10021-010-9404-8.

    Article  Google Scholar 

  • Macreadie, P.I., J.S. Hindell, G.P. Jenkins, R.M. Connolly, and M.J. Keough. 2009. Fish responses to experimental fragmentation of seagrass habitat. Conservation biology : the journal of the Society for Conservation Biology 23: 644–652. https://doi.org/10.1111/j.1523-1739.2008.01130.x.

    Article  Google Scholar 

  • Macreadie, P.I., J.S. Hindell, M.J. Keough, G.P. Jenkins, and R.M. Connolly. 2010. Resource distribution influences positive edge effects in a seagrass fish. Ecology 91: 2013–2021.

    Article  Google Scholar 

  • Magistrato alle Acque di Venezia (ora Provveditorato Interregionale alle OO. PP. del Veneto- Trentino Alto Adige – Friuli Venezia Giulia). 2002. Carta Tecnica della laguna di Venezia. Prodotto dal Concessionario, Consorzio Venezia Nuova

  • Magistrato alle Acque di Venezia (ora Provveditorato Interregionale alle OO. PP. del Veneto - Trentino Alto Adige - Friuli Venezia Giulia) - Selc. 2005. Studio B.12.3/III. La funzionalità dell’ambiente lagunare attraverso rilievi delle risorse alieutiche, dell’avifauna e dell’ittiofauna. Erodibilità del fondale e fattori di disturbo: Rilievi dell’erodibilità del fondale. Rapporto intermedio

  • Magistrato alle Acque di Venezia (ora Provveditorato Interregionale alle OO. PP. del Veneto - Trentino Alto Adige - Friuli Venezia Giulia) - Thetis. 2005. Programma generale delle attività di approfondimento del quadro conoscitivo di riferimento per gli interventi ambientali. 2° stralcio triennale (2003-2006) “Progetto ICSEL”. Attività A

  • Malavasi, S., A. Franco, F. Riccato, C. Valerio, P. Torricelli, and P. Franzoi. 2007. Habitat selection and spatial segregation in three pipefish species. Estuarine, Coastal and Shelf Science 75 (1-2): 143–150. https://doi.org/10.1016/j.ecss.2007.02.022.

    Article  Google Scholar 

  • Malavasi, S., A. Franco, R. Fiorin, P. Franzoi, P. Torricelli, and D. Mainardi. 2005. The shallow water gobiid assemblage of the Venice Lagoon: Abundance, seasonal variation and habitat partitioning. Journal of Fish Biology 67: 146–165. https://doi.org/10.1111/j.0022-1112.2005.00919.x.

    Article  Google Scholar 

  • Marshall, S., and M. Elliott. 1998. Environmental Influences on the Fish Assemblage of the Humber Estuary, U.K. Estuarine, Coastal and Shelf Science 46 (2): 175–184. https://doi.org/10.1006/ecss.1997.0268.

    Article  Google Scholar 

  • Masonjones, H.D., E. Rose, L.B. McRae, and D.L. Dixson. 2010. An examination of the population dynamics of syngnathid fishes within Tampa Bay, Florida, USA. Current Zoology 56: 118–133.

    Google Scholar 

  • McCloskey, R.M., and R.K.F. Unsworth. 2015. Decreasing seagrass density negatively influences associated fauna. PeerJ 3: e1053. https://doi.org/10.7717/peerj.1053.

    Article  Google Scholar 

  • McCullagh P., and Nelder J.A. 1989. Generalized linear models. Second edition. London, UK

  • McGarigal K., Cushman S.A., Neel M.C., and Ene E. 2002. FRAG- STATS: Spatial Pattern Analysis Program for Categorical Maps. University of Massachusetts, Amherst.

  • McLusky D.S., and Elliott M. 2004. The estuarine ecosystem: ecology, threats and management, 3rd edn. Oxford University Press, Oxford.

    Chapter  Google Scholar 

  • Molinaroli, E., S. Guerzoni, A. Sarretta, A. Cucco, and G. Umgiesser. 2007. Links between hydrology and sedimentology in the Lagoon of Venice, Italy. Journal of Marine Systems 68 (3-4): 303–317. https://doi.org/10.1016/j.jmarsys.2006.12.003.

    Article  Google Scholar 

  • Molinaroli, E., S. Guerzoni, A. Sarretta, M. Masiol, and M. Pistolato. 2009. Thirty-year changes (1970 to 2000) in bathymetry and sediment texture recorded in the Lagoon of Venice sub-basins, Italy. Marine Geology 258 (1-4): 115–125. https://doi.org/10.1016/j.margeo.2008.12.001.

    Article  Google Scholar 

  • Moore, C.H., K. Van Niel, and E.S. Harvey. 2011. The effect of landscape composition and configuration on the spatial distribution of temperate demersal fish. Ecography 34 (3): 425–435. https://doi.org/10.1111/j.1600-0587.2010.06436.x.

    Article  Google Scholar 

  • Mumby, P.J. 2006. Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales. Biological Conservation 128 (2): 215–222. https://doi.org/10.1016/j.biocon.2005.09.042.

    Article  Google Scholar 

  • Nagelkerken, I., J. Bothwell, R.S. Nemeth, J.M. Pitt, and G. Van Der Velde. 2008. Interlinkage between Caribbean coral reefs and seagrass beds through feeding migrations by grunts (Haemulidae) depends on habitat accessibility. Marine Ecology Progress Series 368: 155–164. https://doi.org/10.3354/meps07528.

    Article  Google Scholar 

  • Nagelkerken, I., M. Sheaves, R. Baker, and R.M. Connolly. 2015. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries 16 (2): 362–371. https://doi.org/10.1111/faf.12057.

    Article  Google Scholar 

  • Nordlund, L.M., E.W. Koch, E.B. Barbier, and J.C. Creed. 2016. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11 (10): 1–23. https://doi.org/10.1371/journal.pone.0163091.

    Article  Google Scholar 

  • Oliveira, F., K. Erzini, and J.M.S. Gonçalves. 2007. Feeding habits of the deep-snouted pipefish Syngnathus typhle in a temperate coastal lagoon. Estuarine, Coastal and Shelf Science 72 (1-2): 337–347. https://doi.org/10.1016/j.ecss.2006.11.003.

    Article  Google Scholar 

  • Pérez-Ruzafa, A., J.A. García-Charton, E. Barcala, and C. Marcos. 2006. Changes in benthic fish assemblages as a consequence of coastal works in a coastal lagoon: The Mar Menor (Spain, Western Mediterranean). Marine Pollution Bulletin 53 (1-4): 107–120. https://doi.org/10.1016/j.marpolbul.2005.09.014.

    Article  CAS  Google Scholar 

  • Pérez-Ruzafa, A., C. Marcos, and I.M. Pérez-Ruzafa. 2011. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. Physics and Chemistry of the Earth 36 (5-6): 160–166. https://doi.org/10.1016/j.pce.2010.04.013.

    Article  Google Scholar 

  • Perry, D., T.A.B. Staveley, L. Hammar, A. Meyers, R. Lindborg, and M. Gullström. 2017. Temperate fish community variation over seasons in relation to large-scale geographic seascape variables. Canadian Journal of Fisheries and Aquatic Sciences.: 1–10. https://doi.org/10.1139/cjfas-2017-0032.

    Article  Google Scholar 

  • Pittman, S.J., and K.A. Brown. 2011. Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS One 6 (5): e20583. https://doi.org/10.1371/journal.pone.0020583.

    Article  CAS  Google Scholar 

  • Pittman, S.J., C. Caldow, S.D. Hile, and M.E. Monaco. 2007. Using seascape types to explain the spatial patterns of fish in the mangroves of SW Puerto Rico. Marine Ecology Progress Series 348: 273–284. https://doi.org/10.3354/meps07052.

    Article  Google Scholar 

  • Pittman, S.J., C.A. McAlpine, and K.M. Pittman. 2004. Linking fish and prawns to their environment: a hierarchical landscape approach. Marine Ecology Progress Series 283: 233–254. https://doi.org/10.3354/meps283233.

    Article  Google Scholar 

  • Pollom R. 2016a. Nerophis ophidion. The IUCN Red List of Threatened Species 2016: e.T198764A90906820. Downloaded on 24 January 2017.

  • Pollom R. 2016b. Syngnathus typhle. The IUCN Red List of Threatened Species 2016: e.T198767A90923410. Downloaded on 24 January 2017.

  • Quignard, J.P. 1984. Les caracteristiques biologiques et environmentales des lagunes en tant que base biologique de l’amenagement des pecheries. In Management of Coastal Lagoon Fisheries, ed. J.M. Kapetsky and G. Lasserre, 3–38. Rome: FAO Studies and Reviews 61.

    Google Scholar 

  • Ribeiro, J., G.M. Carvalho, J.M.S. Gonçalves, and K. Erzini. 2012. Fish assemblages of shallow intertidal habitats of the Ria Formosa lagoon (South Portugal): Influence of habitat and season. Marine Ecology Progress Series 446: 259–273. https://doi.org/10.3354/meps09455.

    Article  Google Scholar 

  • Riccato, F., R. Fiorin, A. Franco, P. Franzoi, A. Libertini, F. Pranovi, and P. Torricelli. 2003. Population structure and reproduction of three pipefish species (Pisces, Syngnathidae) in a sea grass meadow of the Venice lagoon. Biologia Marina Mediterranea 10: 138–145.

    Google Scholar 

  • Rismondo A., Curiel D., Scarton F., Mion D., and Caniglia G. 2003. A New Seagrass Map for the Venice Lagoon. In Proceedings of the Sixth International Conference on the Mediterranean Coastal Environment, MEDCOAST 03, E. Ozhan (Editor), 7-11 October 2003, Ravenna, Ravenna,, 843–852

  • Robbins, B.D., and S.S. Bell. 1994. Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends in Ecology & EvolutionTrends in ecology & evolution 9: 301–304. https://doi.org/10.1016/0169-5347(94)90041-8.

    Article  CAS  Google Scholar 

  • Rozas, L.P., and T.J. Minello. 2007. Restoring coastal habitat using marsh terracing: the effect of cell size on nekton use. Wetlands 27 (3): 595–609. https://doi.org/10.1672/0277-5212(2007)27[595:RCHUMT]2.0.CO;2.

    Article  Google Scholar 

  • Ryan, M.R., S.S. Killen, R.S. Gregory, and P.V.R. Snelgrove. 2012. Predators and distance between habitat patches modify gap crossing behaviour of juvenile Atlantic cod (Gadus morhua, L. 1758). Journal of Experimental Marine Biology and Ecology 422–423: 81–87. https://doi.org/10.1016/j.jembe.2012.04.017.

    Article  Google Scholar 

  • Salita, J., W. Ekau, and U. Saint-Paul. 2003. Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Marine Ecology Progress Series 247: 183–195. https://doi.org/10.3354/meps247183.

    Article  Google Scholar 

  • Sarretta, A., S. Pillon, E. Molinaroli, S. Guerzoni, and G. Fontolan. 2010. Sediment budget in the Lagoon of Venice, Italy. Continental Shelf Research 30 (8): 934–949. https://doi.org/10.1016/j.csr.2009.07.002.

    Article  Google Scholar 

  • Sato, M., M. Horinouchi, M. Fujita, and M. Sano. 2016. Responses of fish assemblage structures to annual and perennial life cycles of seagrass Zostera marina in Lake Hamana. Ichthyological Research 63 (4): 1–15. https://doi.org/10.1007/s10228-016-0514-y.

    Article  Google Scholar 

  • Scapin, L., F. Cavraro, S. Malavasi, F. Riccato, M. Zucchetta, and P. Franzoi. 2018. Linking pipefishes and seahorses to seagrass meadows in the Venice lagoon: Implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 28 (2): 1–14. https://doi.org/10.1002/aqc.2860.

    Article  Google Scholar 

  • Scapin, L., M. Zucchetta, C. Facca, A. Sfriso, and P. Franzoi. 2016. Using fish assemblage to identify success criteria for seagrass habitat restoration. Web Ecology 16 (1): 33–36. https://doi.org/10.5194/we-16-33-2016.

    Article  Google Scholar 

  • Schultz, S.T., C. Kruschel, and T. Bakran-Petricioli. 2009. Influence of seagrass meadows on predator-prey habitat segregation in an Adriatic lagoon. Marine Ecology Progress Series 374: 85–99. https://doi.org/10.3354/meps07779.

    Article  Google Scholar 

  • Sfriso, A., and C. Facca. 2007. Distribution and production of macrophytes and phytoplankton in the lagoon of Venice: Comparison of actual and past situation. Hydrobiologia 577 (1): 71–85. https://doi.org/10.1007/s10750-006-0418-3.

    Article  Google Scholar 

  • Sfriso, A., C. Facca, S. Ceoldo, and A. Marcomini. 2005a. Recording the occurrence of trophic level changes in the lagoon of Venice over the ’90s. Environment international 31 (7): 993–1001. https://doi.org/10.1016/j.envint.2005.05.009.

    Article  Google Scholar 

  • Sfriso, A., C. Facca, and A. Marcomini. 2005b. Sedimentation rates and erosion processes in the lagoon of Venice. Environment International 31 (7): 983–992. https://doi.org/10.1016/j.envint.2005.05.008.

    Article  CAS  Google Scholar 

  • Sfriso, A., and P.F. Ghetti. 1998. Seasonal variation in biomass, morphometric parameters and production of seagrasses in the lagoon of Venice. Aquatic Botany 61 (3): 207–223. https://doi.org/10.1016/S0304-3770(98)00064-3.

    Article  Google Scholar 

  • Sheaves, M. 2009. Consequences of ecological connectivity: The coastal ecosystem mosaic. Marine Ecology Progress Series 391: 107–115. https://doi.org/10.3354/meps08121.

    Article  Google Scholar 

  • Short, F.T., D.M. Burdick, C.A. Short, R.C. Davis, and P.A. Morgan. 2000. Developing success criteria for restored eel-grass, salt marsh and mud flat habitats. Ecological Engineering 15 (3-4): 239–252. https://doi.org/10.1016/S0925-8574(00)00079-3.

    Article  Google Scholar 

  • Smith, T.M., J.S. Hindell, G.P. Jenkins, and R.M. Connolly. 2010. Seagrass patch size affects fish responses to edges. Journal of Animal Ecology 79: 275–281. https://doi.org/10.1111/j.1365-2656.2009.01605.x.

    Article  Google Scholar 

  • Smith, T.M., J.S. Hindell, G.P. Jenkins, and R.M. Connolly. 2008. Edge effects on fish associated with seagrass and sand patches. Marine Ecology Progress Series 359: 203–213. https://doi.org/10.3354/meps07348.

    Article  Google Scholar 

  • Smith, T.M., J.S. Hindell, G.P. Jenkins, R.M. Connolly, and M.J. Keough. 2011. Edge effects in patchy seagrass landscapes: The role of predation in determining fish distribution. Journal of Experimental Marine Biology and Ecology 399: 8–16. https://doi.org/10.1016/j.jembe.2011.01.010.

    Article  Google Scholar 

  • Solidoro, C., V. Bandelj, F.A. Bernardi, E. Camatti, S. Ciavatta, G. Cossarini, R. Pastres, F. Pranovi, S. Raicevich, G. Socal, A. Sfriso, M. Sigovini, D. Tagliapietra, and P. Torricelli. 2010. Response of the Venice Lagoon Ecosystem to Natural and Anthropogenic Pressures over the Last 50 Years. In Coastal Lagoons: Critica Habitats of Environmental Change, ed. M.J. Kennish and H.W. Paerl, 483–512. Boca Raton: CRC Marine Science.

    Chapter  Google Scholar 

  • Solidoro, C., D. Melaku canu, A. Cucco, and G. Umgiesser. 2004. A partition of the Venice Lagoon based on physical properties and analysis of general circulation. Journal of Marine Systems 51: 147–160.

    Article  Google Scholar 

  • Staveley, T.A.B., D. Perry, R. Lindborg, and M. Gullström. 2017. Seascape structure and complexity influence temperate seagrass fish assemblage composition. Ecography 40: 936–946. https://doi.org/10.1111/ecog.02745.

    Article  Google Scholar 

  • Steffe, A.S., M. Westoby, and J.D. Bell. 1989. Habitat selection and diet in two species of pipefish from seagrass: Sex differences. Marine Ecology Progress Series 55: 23–30. https://doi.org/10.3354/meps055023.

    Article  Google Scholar 

  • Thistle, M.E., D.C. Schneider, R.S. Gregory, and N.J. Wells. 2010. Fractal measures of habitat structure: Maximum densities of juvenile cod occur at intermediate eelgrass complexity. Marine Ecology Progress Series 405: 39–56. https://doi.org/10.3354/meps08511.

    Article  Google Scholar 

  • Uhrin, A.V., M.O. Hall, M.F. Merello, and M.S. Fonseca. 2009. Survival and expansion of mechanically transplanted seagrass sods. Restoration Ecology 17: 359–368. https://doi.org/10.1111/j.1526-100X.2008.00376.x.

    Article  Google Scholar 

  • Umgiesser, G., D. Melaku canu, A. Cucco, and C. Solidoro. 2004. A finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems 51: 123–145.

    Article  Google Scholar 

  • van Katwijk, M.M., A.R. Bos, V.N. de Jonge, L.S.A.M. Hanssen, D.C.R. Hermus, and D.J. de Jong. 2009. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin 58: 179–188. https://doi.org/10.1016/j.marpolbul.2008.09.028.

    Article  CAS  Google Scholar 

  • Vasconcelos, R.P., P. Reis-Santos, V. Fonseca, A. Maia, M. Ruano, S. França, C. Vinagre, M.J. Costa, and H. Cabral. 2007. Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: a multi-metric index and conceptual approach. The Science of the total environment 374: 199–215. https://doi.org/10.1016/j.scitotenv.2006.12.048.

    Article  CAS  Google Scholar 

  • Viaroli, P., M. Bartoli, G. Giordani, M. Naldi, S. Orfanidis, and J.M. Zaldivar. 2008. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquatic Conservation: Marine and Freshwater. Ecosystems 18: 105–117. https://doi.org/10.1002/aqc.

    Article  Google Scholar 

  • Vizzini, S., and A. Mazzola. 2004. The trophic structure of the pipefish community (Pisces: Syngnathidae) from a western Mediterranean seagrass meadow based on stable isotope analysis. Estuaries 27 (2): 325–333. https://doi.org/10.1007/BF02803388.

    Article  Google Scholar 

  • Weinstein, M.P., and S.Y. Litvin. 2016. Macro-Restoration of Tidal Wetlands: A Whole Estuary Approach. Ecological Restoration 34: 27–38. https://doi.org/10.3368/er.34.1.27.

    Article  Google Scholar 

  • Whitfield, A.K. 2016. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology and Fisheries. 27 (1): 75–110. https://doi.org/10.1007/s11160-016-9454-x.

    Article  Google Scholar 

  • Wiens, J.A. 1995. Habitat fragmentation: island vs landscape perspectives on bird conservation. Ibis 137: S97–S104.

    Article  Google Scholar 

  • Yeager, L.A., C.A. Layman, and J.E. Allgeier. 2011. Effects of habitat heterogeneity at multiple spatial scales on fish community assembly. Oecologia 167 (1): 157–168. https://doi.org/10.1007/s00442-011-1959-3.

    Article  Google Scholar 

  • Zucchetta, M., G. Cipolato, F. Pranovi, P. Antonetti, P. Torricelli, P. Franzoi, and S. Malavasi. 2012. The relationships between temperature changes and reproductive investment in a Mediterranean goby: Insights for the assessment of climate change effects. Estuarine, Coastal and Shelf Science 101: 15–23. https://doi.org/10.1016/j.ecss.2012.01.009.

    Article  Google Scholar 

  • Zucchetta M., Scapin L., Cavraro F., Pranovi F., Franco A., and Franzoi P. 2016. Can the effects of anthropogenic pressures and environmental variability on nekton fauna be detected in fishery data? Insights from the monitoring of the artisanal fishery within the Venice lagoon. Estuaries and Coasts 39:1. https://doi.org/10.1007/s12237-015-0064-y, 4, 1164, 1182

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the Italian Ministry of Education, Universities and Research (PRIN grant 2009W2395), by Corila (Consorzio Ricerche Lagunari) and by European Union’s LIFE+ financial instrument (grant LIFE12 NAT/IT/000331, which contributes to the environmental recovery of a Natura 2000 site, SIC IT3250031 - Northern Venice Lagoon).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Scapin.

Additional information

Communicated by Masahiro Nakaoka

Electronic Supplementary Material

ESM 1

(DOCX 6722 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scapin, L., Zucchetta, M., Sfriso, A. et al. Local Habitat and Seascape Structure Influence Seagrass Fish Assemblages in the Venice Lagoon: The Importance of Conservation at Multiple Spatial Scales. Estuaries and Coasts 41, 2410–2425 (2018). https://doi.org/10.1007/s12237-018-0434-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0434-3

Keywords

Navigation